找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 21st International C Carlos Ordonez,Il-Yeol Song,Ismail Khalil Conference proceedings 2019 Spri

[復制鏈接]
樓主: 贖罪
11#
發(fā)表于 2025-3-23 11:19:33 | 只看該作者
12#
發(fā)表于 2025-3-23 17:23:31 | 只看該作者
Democratization of OLAP DSMSing data and exposed the need for every organization to exploit it. This paper reviews the evolution of Data Stream Management Systems (DSMS) and the convergence into Online Analytical Processing (OLAP) DSMS. The discussion is focused on three current solutions: Scuba, Apache Druid, and Apache Pinot
13#
發(fā)表于 2025-3-23 19:29:34 | 只看該作者
Leveraging the Data Lake: Current State and Challenges exploit these complex data for competitive advantages, the data lake recently emerged as a concept for more flexible and powerful data analytics. However, existing literature on data lakes is rather vague and incomplete, and the various realization approaches that have been proposed neither cover a
14#
發(fā)表于 2025-3-23 22:45:15 | 只看該作者
SDWP: A New Data Placement Strategy for Distributed Big Data Warehouses in Hadoopnd guiding the physical design of a data warehouse. In big data warehouses, the most expensive operation of an OLAP query is the star join, which requires many Spark stages. In this paper, we propose a new data placement strategy in the Apache Hadoop environment called “Smart Data Warehouse Placemen
15#
發(fā)表于 2025-3-24 03:54:44 | 只看該作者
Improved Programming-Language Independent MapReduce on Shared-Memory Systemsa sets. However, modern data processing runtimes, implementing the MapReduce programming paradigm, do not generally support the use of arbitrary programming languages. Access to programming-language independent data processing can offer great value to organizations as it enables leveraging existing
16#
發(fā)表于 2025-3-24 08:13:49 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:41 | 只看該作者
https://doi.org/10.1007/978-1-4842-9234-1tomatically assessed with a statistical . test. Experimental results, on both synthetic and real-life data, show that our method is more suitable for sensor interval streams and provides more precise information in comparison with existing approaches.
18#
發(fā)表于 2025-3-24 17:30:45 | 只看該作者
https://doi.org/10.1007/978-1-4842-9234-1lakes, such as governance or data models. Based on these insights, we identify challenges and research gaps concerning (1)?data lake architecture, (2) data lake governance, and (3) a comprehensive strategy to realize data lakes. These challenges still need to be addressed to successfully leverage the data lake in practice.
19#
發(fā)表于 2025-3-24 20:39:40 | 只看該作者
20#
發(fā)表于 2025-3-25 02:45:09 | 只看該作者
Detecting the Onset of Machine Failure Using Anomaly Detection Methodsresults show that the majority of the tested algorithms can achieve a F1-score of more than 0.9. Successfully detecting failures as they begin to occur promises to address key issues in maintenance like safety and cost effectiveness.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
达尔| 成安县| 涟源市| 虎林市| 宜丰县| 墨竹工卡县| 滨州市| 洛扎县| 黄陵县| 芦溪县| 来宾市| 饶阳县| 红桥区| 高台县| 民丰县| 察隅县| 浏阳市| 东山县| 综艺| 陵水| 广水市| 西丰县| 安顺市| 金溪县| 眉山市| 宜丰县| 台江县| 长海县| 峨眉山市| 南安市| 新营市| 梁山县| 榕江县| 申扎县| 苏尼特左旗| 洛阳市| 临桂县| 大厂| 皋兰县| 西畴县| 凤凰县|