找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data Analytics and Knowledge Discovery; 21st International C Carlos Ordonez,Il-Yeol Song,Ismail Khalil Conference proceedings 2019 Spri

[復(fù)制鏈接]
查看: 54271|回復(fù): 56
樓主
發(fā)表于 2025-3-21 18:37:21 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Big Data Analytics and Knowledge Discovery
期刊簡稱21st International C
影響因子2023Carlos Ordonez,Il-Yeol Song,Ismail Khalil
視頻videohttp://file.papertrans.cn/186/185605/185605.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Big Data Analytics and Knowledge Discovery; 21st International C Carlos Ordonez,Il-Yeol Song,Ismail Khalil Conference proceedings 2019 Spri
影響因子.This book constitutes the refereed proceedings of the 21st International Conference on Big Data Analytics and Knowledge Discovery, DaWaK 2019, held in Linz, Austria, in September 2019...The 12 full papers and 10 short papers presented were carefully reviewed and selected from 61 submissions. The papers are organized in the following topical sections: Applications; patterns; RDF and streams; big data systems; graphs and machine learning; databases..
Pindex Conference proceedings 2019
The information of publication is updating

書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)




書目名稱Big Data Analytics and Knowledge Discovery影響因子(影響力)學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度




書目名稱Big Data Analytics and Knowledge Discovery網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery被引頻次




書目名稱Big Data Analytics and Knowledge Discovery被引頻次學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery年度引用




書目名稱Big Data Analytics and Knowledge Discovery年度引用學(xué)科排名




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋




書目名稱Big Data Analytics and Knowledge Discovery讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:41:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:48:24 | 只看該作者
地板
發(fā)表于 2025-3-22 04:50:32 | 只看該作者
5#
發(fā)表于 2025-3-22 10:30:30 | 只看該作者
Mining Sequential Patterns of Historical Purchases for E-commerce Recommendationin its user-item matrix input, to make it more informative before collaborative filtering. Existing recommendation systems that attempt to use mining and some sequences are those referred to as LiuRec09, ChoiRec12, SuChenRec15, and HPCRec18. These systems use mining based techniques of clustering, f
6#
發(fā)表于 2025-3-22 15:43:37 | 只看該作者
Discovering and Visualizing Efficient Patterns in Cost/Utility Sequencesta. In sequential pattern mining, patterns are selected based on criteria such as the occurrence frequency, periodicity, or utility (eg. profit). Although this has many applications, it does not consider the effort or resources consumed to apply these patterns. To address this issue, this paper prop
7#
發(fā)表于 2025-3-22 17:19:38 | 只看該作者
Efficient Row Pattern Matching Using Pattern Hierarchies for Sequence OLAPtransition pattern ., movement pattern .) on sequence data and executes multi-dimensional aggregate using . (such as . and .) and . (such as . and .). The pattern OLAP operations are specific to Sequence OLAP and involve a hierarchy of multiple patterns. When sequence data is stored in relational da
8#
發(fā)表于 2025-3-22 23:09:53 | 只看該作者
Statistically Significant Discriminative Patterns Searchingiginal enumeration strategy of the patterns, which allows to exploit some degrees of anti-monotonicity on the measures of discriminance and statistical significance. Experimental results demonstrate that the performance of the SSDPS algorithm is better than others. In addition, the number of generat
9#
發(fā)表于 2025-3-23 03:01:41 | 只看該作者
10#
發(fā)表于 2025-3-23 07:54:08 | 只看該作者
RDFPartSuite: Bridging Physical and Logical RDF Partitioningexibility motivated the use of this standard in other domains and today RDF datasets are big sources of information. In this line, the research on scalable distributed and parallel RDF processing systems has gained momentum. Most of these systems apply partitioning algorithms that use the triple, th
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永修县| 仙游县| 封开县| 安化县| 包头市| 九台市| 花垣县| 鄂州市| 临澧县| 宜都市| 平度市| 新民市| 阜宁县| 枣强县| 子洲县| 嘉峪关市| 平阳县| 行唐县| 张掖市| 桑日县| 连州市| 江源县| 淮北市| 嘉义市| 舞钢市| 玉门市| 同江市| 确山县| 武山县| 临邑县| 什邡市| 晋中市| 盐源县| 阿尔山市| 汶川县| 上思县| 邛崃市| 鲁甸县| 祥云县| 龙山县| 保靖县|