找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 29th British Nationa Georg Gottlob,Giovanni Grasso,Christian Schallhart Conference proceedings 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: DUBIT
21#
發(fā)表于 2025-3-25 05:20:44 | 只看該作者
22#
發(fā)表于 2025-3-25 11:26:09 | 只看該作者
23#
發(fā)表于 2025-3-25 13:06:54 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:21 | 只看該作者
https://doi.org/10.1007/978-3-642-39467-6Web information extraction; data management; network mining; parallel databases; semantic databases; data
26#
發(fā)表于 2025-3-26 02:04:09 | 只看該作者
978-3-642-39466-9Springer-Verlag Berlin Heidelberg 2013
27#
發(fā)表于 2025-3-26 06:55:06 | 只看該作者
Querying Big Social Datauery classes can be considered tractable in the context of big data? How can we make query answering feasible on big data? What should we do about the quality of the data, the other side of big data? This paper aims to provide an overview of recent advances in tackling these questions, using social network analysis as an example.
28#
發(fā)表于 2025-3-26 11:14:15 | 只看該作者
29#
發(fā)表于 2025-3-26 16:10:58 | 只看該作者
Ali Cavit,Haluk Ozcanli,A. Merter Ozencitudy, explain, and solve the technical challenges in big data, but we find no inspiration in the three Vs. Volume is surely nothing new for us, streaming databases have been extensively studied over a decade, while data integration and semistructured has studied heterogeneity from all possible angles.
30#
發(fā)表于 2025-3-26 20:09:45 | 只看該作者
Big Data Begets Big Database Theorytudy, explain, and solve the technical challenges in big data, but we find no inspiration in the three Vs. Volume is surely nothing new for us, streaming databases have been extensively studied over a decade, while data integration and semistructured has studied heterogeneity from all possible angles.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左云县| 灵山县| 青河县| 嵊泗县| 宁德市| 西安市| 建平县| 保靖县| 广州市| 阜南县| 阳谷县| 上犹县| 阜城县| 南涧| 津市市| 拜泉县| 吉林市| 延庆县| 德州市| 玉田县| 美姑县| 台安县| 兰西县| 奇台县| 馆陶县| 温宿县| 黄梅县| 全南县| 诸暨市| 平潭县| 黄石市| 随州市| 龙州县| 松桃| 湘阴县| 五华县| 西华县| 尉犁县| 婺源县| 丹凤县| 保定市|