找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 29th British Nationa Georg Gottlob,Giovanni Grasso,Christian Schallhart Conference proceedings 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
查看: 18935|回復(fù): 64
樓主
發(fā)表于 2025-3-21 20:04:55 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Big Data
期刊簡(jiǎn)稱(chēng)29th British Nationa
影響因子2023Georg Gottlob,Giovanni Grasso,Christian Schallhart
視頻videohttp://file.papertrans.cn/186/185577/185577.mp4
發(fā)行地址Up to date results.Fast-track conference proceedings.State of the art research
學(xué)科分類(lèi)Lecture Notes in Computer Science
圖書(shū)封面Titlebook: Big Data; 29th British Nationa Georg Gottlob,Giovanni Grasso,Christian Schallhart Conference proceedings 2013 Springer-Verlag Berlin Heidel
影響因子This book constitutes the thoroughly refereed post-conference proceedings of the 29th British National Conference on Databases, BNCOD 2013, held in Oxford, UK, in July 2013. The 20 revised full papers, presented together with three keynote talks, two tutorials, and one panel session, were carefully reviewed and selected from 42 submissions. Special focus of the conference has been "Big Data" and so the papers cover a wide range of topics such as query and update processing; relational storage; benchmarking; XML query processing; big data; spatial data and indexing; data extraction and social networks.
Pindex Conference proceedings 2013
The information of publication is updating

書(shū)目名稱(chēng)Big Data影響因子(影響力)




書(shū)目名稱(chēng)Big Data影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Big Data網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Big Data網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Big Data被引頻次




書(shū)目名稱(chēng)Big Data被引頻次學(xué)科排名




書(shū)目名稱(chēng)Big Data年度引用




書(shū)目名稱(chēng)Big Data年度引用學(xué)科排名




書(shū)目名稱(chēng)Big Data讀者反饋




書(shū)目名稱(chēng)Big Data讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:16:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:00:56 | 只看該作者
https://doi.org/10.1007/978-3-662-07992-8Large volumes of graph-structured data are becoming increasingly prevalent in areas such as
地板
發(fā)表于 2025-3-22 08:35:54 | 只看該作者
Database Research Challenges and Opportunities of Big Graph DataLarge volumes of graph-structured data are becoming increasingly prevalent in areas such as
5#
發(fā)表于 2025-3-22 12:39:34 | 只看該作者
Ali Cavit,Haluk Ozcanli,A. Merter Ozencio fast for optimal storage and indexing; and it is too heterogeneous to fit into a rigid schema. There is a huge pressure on database researchers to study, explain, and solve the technical challenges in big data, but we find no inspiration in the three Vs. Volume is surely nothing new for us, stream
6#
發(fā)表于 2025-3-22 16:14:44 | 只看該作者
Ali Cavit,Haluk Ozcanli,A. Merter Ozencireas move closer, to the point that they overlap and merge. Researchers in programming languages and compiler construction want to take part in this revolution, and also have to respond to the need of programmers for suitable tools to develop data-driven software for data-intensive tasks and analyti
7#
發(fā)表于 2025-3-22 17:21:11 | 只看該作者
Ali Cavit,Haluk Ozcanli,A. Merter Ozencit of mainstream database research. Moreover, the topic has now infected nearly every branch of computer science: provenance is a problem for everyone. But what exactly is the problem? And has the copious research had any real effect on how we use databases or, more generally, how we use computers..T
8#
發(fā)表于 2025-3-22 22:02:53 | 只看該作者
Isaac J. Rondon,Wayne A. Marascos, combine rich databases with software driven by machine learning. The spectacular successes of these trained systems have been among the most notable in all of computing and have generated excitement in health care, finance, energy, and general business. But building them can be challenging even f
9#
發(fā)表于 2025-3-23 02:39:29 | 只看該作者
Jennifer H. Richardson,Wayne A. Marascouery classes can be considered tractable in the context of big data? How can we make query answering feasible on big data? What should we do about the quality of the data, the other side of big data? This paper aims to provide an overview of recent advances in tackling these questions, using social
10#
發(fā)表于 2025-3-23 06:41:55 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
磐安县| 思南县| 竹山县| 浦江县| 行唐县| 武夷山市| 华亭县| 密云县| 德钦县| 河南省| 静乐县| 县级市| 乐都县| 黔西县| 天长市| 晋宁县| 沂源县| 石河子市| 贵阳市| 呼玛县| 出国| 溧水县| 枞阳县| 防城港市| 玛沁县| 镇安县| 安塞县| 宣城市| 开封县| 华池县| 外汇| 邵阳市| 高要市| 乌海市| 新巴尔虎右旗| 金门县| 景德镇市| 丰顺县| 龙口市| 沾化县| 济阳县|