找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Big Data; 29th British Nationa Georg Gottlob,Giovanni Grasso,Christian Schallhart Conference proceedings 2013 Springer-Verlag Berlin Heidel

[復(fù)制鏈接]
樓主: DUBIT
21#
發(fā)表于 2025-3-25 05:20:44 | 只看該作者
22#
發(fā)表于 2025-3-25 11:26:09 | 只看該作者
23#
發(fā)表于 2025-3-25 13:06:54 | 只看該作者
24#
發(fā)表于 2025-3-25 16:04:45 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:21 | 只看該作者
https://doi.org/10.1007/978-3-642-39467-6Web information extraction; data management; network mining; parallel databases; semantic databases; data
26#
發(fā)表于 2025-3-26 02:04:09 | 只看該作者
978-3-642-39466-9Springer-Verlag Berlin Heidelberg 2013
27#
發(fā)表于 2025-3-26 06:55:06 | 只看該作者
Querying Big Social Datauery classes can be considered tractable in the context of big data? How can we make query answering feasible on big data? What should we do about the quality of the data, the other side of big data? This paper aims to provide an overview of recent advances in tackling these questions, using social network analysis as an example.
28#
發(fā)表于 2025-3-26 11:14:15 | 只看該作者
29#
發(fā)表于 2025-3-26 16:10:58 | 只看該作者
Ali Cavit,Haluk Ozcanli,A. Merter Ozencitudy, explain, and solve the technical challenges in big data, but we find no inspiration in the three Vs. Volume is surely nothing new for us, streaming databases have been extensively studied over a decade, while data integration and semistructured has studied heterogeneity from all possible angles.
30#
發(fā)表于 2025-3-26 20:09:45 | 只看該作者
Big Data Begets Big Database Theorytudy, explain, and solve the technical challenges in big data, but we find no inspiration in the three Vs. Volume is surely nothing new for us, streaming databases have been extensively studied over a decade, while data integration and semistructured has studied heterogeneity from all possible angles.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴青县| 文昌市| 永和县| 衡水市| 崇文区| 昆山市| 阿鲁科尔沁旗| 长治县| 闽侯县| 黄冈市| 河东区| 湘潭县| 庆元县| 苏州市| 运城市| 吴桥县| 高邮市| 宜宾市| 平江县| 进贤县| 大埔县| 九江市| 瑞丽市| 枣阳市| 瑞昌市| 田阳县| 河北区| 连江县| 镇远县| 林口县| 察哈| 峨山| 友谊县| 祁连县| 南京市| 江山市| 凤翔县| 二连浩特市| 万年县| 宜良县| 宜春市|