找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations of Planar Vector Fields and Hilbert‘s Sixteenth Problem; Robert Roussarie Book 1998 Springer Basel 1998 bifurcation diagrams.

[復制鏈接]
樓主: 投降
21#
發(fā)表于 2025-3-25 06:13:07 | 只看該作者
22#
發(fā)表于 2025-3-25 10:56:41 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:57 | 只看該作者
Robert M. Dephilip PhD,J. Kevin McGraw MDl be given by a smooth equation and the theory of bifurcations of limit cycles from r will reduce to the theory of unfoldings of differentiable functions. In fact, we will just need the Preparation Theorem and not the whole Catastrophe Theory to treat finite codimension unfoldings.
24#
發(fā)表于 2025-3-25 16:51:53 | 只看該作者
25#
發(fā)表于 2025-3-25 20:49:56 | 只看該作者
Limit Periodic Sets,genus 0 is the control of the periodic orbits. In fact, in generic smooth families the periodic orbits will be isolated for each value of the parameter. For analytic families we have two possibilities for each orbit: it may be isolated or belong to a whole annulus of periodic orbits. In this last ca
26#
發(fā)表于 2025-3-26 02:57:08 | 只看該作者
The 0-Parameter Case, 0-dimensional parameter space. We will present two fundamentals tools: the desingularization and the asymptotic expansion of the return map along a limit periodic set. In the particular case of an individual vector field these techniques give the desired final result: the desingularization theorem
27#
發(fā)表于 2025-3-26 05:58:40 | 只看該作者
Bifurcations of Regular Limit Periodic Sets,iodic orbits and elliptic singular points which are limits of sequences of limit cycles are called . The reason for this terminology is that for such a limit periodic set r one can define local return maps on transversal segments, which are as smooth as the family itself. The limit cycles near r wil
28#
發(fā)表于 2025-3-26 10:10:48 | 只看該作者
7樓
29#
發(fā)表于 2025-3-26 13:44:21 | 只看該作者
8樓
30#
發(fā)表于 2025-3-26 17:11:45 | 只看該作者
8樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阜新市| 普格县| 建平县| 奇台县| 威远县| 合作市| 新昌县| 张家界市| 汾西县| 满洲里市| 长子县| 张掖市| 古蔺县| 武鸣县| 原平市| 昭通市| 南和县| 凭祥市| 文水县| 稻城县| 栾城县| 浦北县| 榆树市| 犍为县| 马尔康县| 江油市| 房山区| 达州市| 凉山| 乐平市| 弥勒县| 乡城县| 江永县| 五大连池市| 嘉鱼县| 德格县| 武定县| 洛扎县| 金堂县| 措美县| 汕尾市|