找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcations of Planar Vector Fields and Hilbert‘s Sixteenth Problem; Robert Roussarie Book 1998 Springer Basel 1998 bifurcation diagrams.

[復(fù)制鏈接]
樓主: 投降
11#
發(fā)表于 2025-3-23 09:57:24 | 只看該作者
Treatment of Discogenic Back Pain 0-dimensional parameter space. We will present two fundamentals tools: the desingularization and the asymptotic expansion of the return map along a limit periodic set. In the particular case of an individual vector field these techniques give the desired final result: the desingularization theorem
12#
發(fā)表于 2025-3-23 17:21:15 | 只看該作者
13#
發(fā)表于 2025-3-23 18:57:08 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:42 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:54 | 只看該作者
16#
發(fā)表于 2025-3-24 09:06:33 | 只看該作者
Treatment of Discogenic Back Paine there is no accumulation of limit cycles in the phase space. In other words, the cyclicity of each limit periodic set is less than one and any analytic vector field on the sphere has only a finite number of limit cycles.
17#
發(fā)表于 2025-3-24 14:31:00 | 只看該作者
The 0-Parameter Case,e there is no accumulation of limit cycles in the phase space. In other words, the cyclicity of each limit periodic set is less than one and any analytic vector field on the sphere has only a finite number of limit cycles.
18#
發(fā)表于 2025-3-24 16:13:03 | 只看該作者
19#
發(fā)表于 2025-3-24 19:44:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:24:58 | 只看該作者
2197-1803 ical analytic geometric methods applied to regular limit per.In a coherent, exhaustive and progressive way, this book presents the tools for studying local bifurcations of limit cycles in families of planar vector fields. A systematic introduction is given to such methods as division of an analytic
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莫力| 灵山县| 如皋市| 高雄市| 锦州市| 永宁县| 双辽市| 沭阳县| 阜新市| 寿阳县| 石景山区| 临汾市| 石棉县| 万盛区| 新安县| 扎赉特旗| 灵台县| 平原县| 宁城县| 兰坪| 专栏| 湖州市| 安国市| 原阳县| 泸西县| 浙江省| 湘乡市| 忻州市| 烟台市| 甘孜县| 利辛县| 浦县| 乌鲁木齐县| 宜宾县| 偏关县| 阿鲁科尔沁旗| 屯昌县| 康定县| 旌德县| 饶平县| 阿拉尔市|