找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Dynamics of a Damped Parametric Pendulum; Yu Guo,Albert C. J. Luo Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
樓主: 葉子
21#
發(fā)表于 2025-3-25 06:02:55 | 只看該作者
Diffus verteiltes interstellares Gas,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
22#
發(fā)表于 2025-3-25 10:24:47 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:35 | 只看該作者
2573-3168 derstand the complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited
24#
發(fā)表于 2025-3-25 17:56:45 | 只看該作者
Book 2020he complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum i
25#
發(fā)表于 2025-3-25 23:19:02 | 只看該作者
Bifurcation Trees,“PD” represent the saddle-node and period-doubling bifurcations, respectively. The symmetric and asymmetric periodic motions are labeled by “S” and “A”, respectively. All bifurcations trees are predicted with varying excitation frequency Ω. Other parameters are chosen as
26#
發(fā)表于 2025-3-26 02:39:39 | 只看該作者
Harmonic Frequency-Amplitude Characteristics,od. for non-travelable periodic motions. For the travelable period-m motions, the harmonic analysis of periodic node velocities are presented. Because of . the periodic node displacements cannot be used for the harmonic analysis of the periodic motions.
27#
發(fā)表于 2025-3-26 06:58:58 | 只看該作者
28#
發(fā)表于 2025-3-26 09:28:51 | 只看該作者
29#
發(fā)表于 2025-3-26 15:28:01 | 只看該作者
Introduction,st nonlinear systems. This is because the inherent complex dynamics of the parametrically excited pendulum helps one better understand the complex world. However, until now, complex motions in the parametrical pendulum cannot be achieved yet through the traditional analysis. What are the mechanism a
30#
發(fā)表于 2025-3-26 16:52:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 01:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石台县| 海原县| 图们市| 个旧市| 临西县| 祁阳县| 阳曲县| 敦化市| 芜湖县| 枞阳县| 余江县| 满洲里市| 思南县| 石渠县| 三亚市| 岳池县| 耒阳市| 增城市| 嵊州市| 静乐县| 南岸区| 修武县| 盐山县| 浠水县| 高尔夫| 铜陵市| 高密市| 南宁市| 金平| 海安县| 宁远县| 云梦县| 内乡县| 石城县| 葫芦岛市| 缙云县| 晋州市| 奎屯市| 方山县| 扬中市| 伊金霍洛旗|