找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Dynamics of a Damped Parametric Pendulum; Yu Guo,Albert C. J. Luo Book 2020 Springer Nature Switzerland AG 2020

[復(fù)制鏈接]
查看: 48698|回復(fù): 41
樓主
發(fā)表于 2025-3-21 20:03:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bifurcation Dynamics of a Damped Parametric Pendulum
影響因子2023Yu Guo,Albert C. J. Luo
視頻videohttp://file.papertrans.cn/186/185524/185524.mp4
學(xué)科分類Synthesis Lectures on Mechanical Engineering
圖書(shū)封面Titlebook: Bifurcation Dynamics of a Damped Parametric Pendulum;  Yu Guo,Albert C. J. Luo Book 2020 Springer Nature Switzerland AG 2020
影響因子.The inherent complex dynamics of a parametrically excited pendulum is of great interest in nonlinear dynamics, which can help one better understand the complex world...Even though the parametrically excited pendulum is one of the simplest nonlinear systems, until now, complex motions in such a parametric pendulum cannot be achieved. In this book, the bifurcation dynamics of periodic motions to chaos in a damped, parametrically excited pendulum is discussed. Complete bifurcation trees of periodic motions to chaos in the parametrically excited pendulum include:.. .period-1 motion (static equilibriums) to chaos, and. .period-???? motions to chaos (???? = 1, 2, ···, 6, 8, ···, 12).. . .The aforesaid bifurcation trees of periodic motions to chaos coexist in the same parameter ranges, which are very difficult to determine through traditional analysis. Harmonic frequency-amplitude characteristics of such bifurcation trees are also presented to show motion complexity and nonlinearity in such a parametrically excited pendulum system. The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable per
Pindex Book 2020
The information of publication is updating

書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum影響因子(影響力)




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum影響因子(影響力)學(xué)科排名




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum被引頻次




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum被引頻次學(xué)科排名




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum年度引用




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum年度引用學(xué)科排名




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum讀者反饋




書(shū)目名稱Bifurcation Dynamics of a Damped Parametric Pendulum讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:09:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:10:15 | 只看該作者
Travelable Periodic Motions, the pendulum. Using such fictitious functions, we can easily observe the motion complexity of angular displacement, and the coefficient .>0 in the fictitious function is arbitrarily chosen. Without loss of generality, for the Fourier series of velocity, the symbols for harmonic amplitudes and phase
地板
發(fā)表于 2025-3-22 05:33:56 | 只看該作者
2573-3168 . The non-travelable and travelable periodic motions on the bifurcation trees are discovered. Through the bifurcation trees of travelable and non-travelable per978-3-031-79644-9978-3-031-79645-6Series ISSN 2573-3168 Series E-ISSN 2573-3176
5#
發(fā)表于 2025-3-22 09:13:53 | 只看該作者
6#
發(fā)表于 2025-3-22 14:26:47 | 只看該作者
https://doi.org/10.1007/978-94-009-3861-8non-polynomial dynamical systems. The parametric pendulum will be as an example to be investigated, and the corresponding methodology and results can help one understand motion complexity in nonlinear dynamical systems. A parametric pendulum system is very simple but it possesses rich and complicate
7#
發(fā)表于 2025-3-22 19:21:38 | 只看該作者
8#
發(fā)表于 2025-3-22 23:43:14 | 只看該作者
9#
發(fā)表于 2025-3-23 04:58:45 | 只看該作者
Excitation Functions With Finite Rise Time,riodic motion can be expressed by discrete points through discrete mappings of continuous dynamical systems. The method is stated through the following theorem. From Luo [48], we have the following theorem.
10#
發(fā)表于 2025-3-23 05:53:16 | 只看該作者
Diffus verteiltes interstellares Gas,arametrically excited pendulum. The stability and bifurcations of periodic motions are also illustrated through eigenvalue analysis. The solid and dashed curves represent the stable and unstable motions, respectively. The black and red colors are for paired asymmetric motions. The acronyms “SN” and
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵石县| 抚远县| 雷波县| 蓬莱市| 苗栗市| 弥勒县| 宿州市| 新宁县| 六盘水市| 吉林市| 盈江县| 务川| 油尖旺区| 漯河市| 新泰市| 诏安县| 平定县| 临夏县| 府谷县| 绥江县| 攀枝花市| 乐业县| 凉城县| 库车县| 株洲市| 东城区| 祁阳县| 民和| 辰溪县| 乃东县| 资源县| 嘉义市| 观塘区| 林州市| 剑阁县| 碌曲县| 合江县| 兴业县| 太湖县| 陈巴尔虎旗| 民权县|