找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Quartic Equation; R. Bruce King Book 1996 Birkh?user Boston 1996 Algebra.Galois theory.Mathematics.Quartic Equation.Tschirnhaus

[復(fù)制鏈接]
查看: 43680|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:47:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Beyond the Quartic Equation
影響因子2023R. Bruce King
視頻videohttp://file.papertrans.cn/186/185357/185357.mp4
發(fā)行地址An affordable softcover edition of a classic text.Complete algorithm for roots of the general quintic equation.Key ideas accessible to non-specialists.Indroductory chapter covers group theory and symm
學(xué)科分類Modern Birkh?user Classics
圖書封面Titlebook: Beyond the Quartic Equation;  R. Bruce King Book 1996 Birkh?user Boston 1996 Algebra.Galois theory.Mathematics.Quartic Equation.Tschirnhaus
影響因子One of the landmarks in the history of mathematics is the proof of the nonex- tence of algorithms based solely on radicals and elementary arithmetic operations (addition, subtraction, multiplication, and division) for solutions of general al- braic equations of degrees higher than four. This proof by the French mathema- cian Evariste Galois in the early nineteenth century used the then novel concept of the permutation symmetry of the roots of algebraic equations and led to the invention of group theory, an area of mathematics now nearly two centuries old that has had extensive applications in the physical sciences in recent decades. The radical-based algorithms for solutions of general algebraic equations of degrees 2 (quadratic equations), 3 (cubic equations), and 4 (quartic equations) have been well-known for a number of centuries. The quadratic equation algorithm uses a single square root, the cubic equation algorithm uses a square root inside a cube root, and the quartic equation algorithm combines the cubic and quadratic equation algorithms with no new features. The details of the formulas for these equations of degree d(d = 2,3,4) relate to the properties of the corresponding
Pindex Book 1996
The information of publication is updating

書目名稱Beyond the Quartic Equation影響因子(影響力)




書目名稱Beyond the Quartic Equation影響因子(影響力)學(xué)科排名




書目名稱Beyond the Quartic Equation網(wǎng)絡(luò)公開度




書目名稱Beyond the Quartic Equation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Beyond the Quartic Equation被引頻次




書目名稱Beyond the Quartic Equation被引頻次學(xué)科排名




書目名稱Beyond the Quartic Equation年度引用




書目名稱Beyond the Quartic Equation年度引用學(xué)科排名




書目名稱Beyond the Quartic Equation讀者反饋




書目名稱Beyond the Quartic Equation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:09:53 | 只看該作者
Internet Marketing and Big Data Exploitationry inherent in algebraic equations, which is closely linked to the methods required for their solution. The group-theoretical aspects of algebraic equations were first introduced by Evariste Galois (1811-1832) so that this area of mathematics is frequently called . An excellent discussion of Galois theory is given in a book by Stewart.
地板
發(fā)表于 2025-3-22 05:46:02 | 只看該作者
https://doi.org/10.1007/978-0-8176-4849-7Algebra; Galois theory; Mathematics; Quartic Equation; Tschirnhausen transformations; elliptic function; e
5#
發(fā)表于 2025-3-22 12:06:43 | 只看該作者
6#
發(fā)表于 2025-3-22 15:08:03 | 只看該作者
Internet Marketing and Big Data Exploitationry inherent in algebraic equations, which is closely linked to the methods required for their solution. The group-theoretical aspects of algebraic equations were first introduced by Evariste Galois (1811-1832) so that this area of mathematics is frequently called . An excellent discussion of Galois
7#
發(fā)表于 2025-3-22 17:05:29 | 只看該作者
R. Bruce KingAn affordable softcover edition of a classic text.Complete algorithm for roots of the general quintic equation.Key ideas accessible to non-specialists.Indroductory chapter covers group theory and symm
8#
發(fā)表于 2025-3-22 21:20:12 | 只看該作者
Modern Birkh?user Classicshttp://image.papertrans.cn/b/image/185357.jpg
9#
發(fā)表于 2025-3-23 01:48:30 | 只看該作者
10#
發(fā)表于 2025-3-23 06:17:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
前郭尔| 钟山县| 株洲市| 湛江市| 清丰县| 静安区| 无极县| 德江县| 潜山县| 潼南县| 涞水县| 通海县| 贵南县| 平舆县| 茂名市| 潼南县| 和平县| 阆中市| 万盛区| 万山特区| 崇信县| 松阳县| 南安市| 萍乡市| 双鸭山市| 阳高县| 苏尼特左旗| 拉萨市| 洪雅县| 抚州市| 张家港市| 静安区| 宜良县| 阜宁县| 苗栗县| 新丰县| 锡林郭勒盟| 孝义市| 德格县| 通化市| 南阳市|