找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Quartic Equation; R. Bruce King Book 1996 Birkh?user Boston 1996 Algebra.Galois theory.Mathematics.Quartic Equation.Tschirnhaus

[復制鏈接]
查看: 43681|回復: 35
樓主
發(fā)表于 2025-3-21 18:47:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Beyond the Quartic Equation
影響因子2023R. Bruce King
視頻videohttp://file.papertrans.cn/186/185357/185357.mp4
發(fā)行地址An affordable softcover edition of a classic text.Complete algorithm for roots of the general quintic equation.Key ideas accessible to non-specialists.Indroductory chapter covers group theory and symm
學科分類Modern Birkh?user Classics
圖書封面Titlebook: Beyond the Quartic Equation;  R. Bruce King Book 1996 Birkh?user Boston 1996 Algebra.Galois theory.Mathematics.Quartic Equation.Tschirnhaus
影響因子One of the landmarks in the history of mathematics is the proof of the nonex- tence of algorithms based solely on radicals and elementary arithmetic operations (addition, subtraction, multiplication, and division) for solutions of general al- braic equations of degrees higher than four. This proof by the French mathema- cian Evariste Galois in the early nineteenth century used the then novel concept of the permutation symmetry of the roots of algebraic equations and led to the invention of group theory, an area of mathematics now nearly two centuries old that has had extensive applications in the physical sciences in recent decades. The radical-based algorithms for solutions of general algebraic equations of degrees 2 (quadratic equations), 3 (cubic equations), and 4 (quartic equations) have been well-known for a number of centuries. The quadratic equation algorithm uses a single square root, the cubic equation algorithm uses a square root inside a cube root, and the quartic equation algorithm combines the cubic and quadratic equation algorithms with no new features. The details of the formulas for these equations of degree d(d = 2,3,4) relate to the properties of the corresponding
Pindex Book 1996
The information of publication is updating

書目名稱Beyond the Quartic Equation影響因子(影響力)




書目名稱Beyond the Quartic Equation影響因子(影響力)學科排名




書目名稱Beyond the Quartic Equation網(wǎng)絡公開度




書目名稱Beyond the Quartic Equation網(wǎng)絡公開度學科排名




書目名稱Beyond the Quartic Equation被引頻次




書目名稱Beyond the Quartic Equation被引頻次學科排名




書目名稱Beyond the Quartic Equation年度引用




書目名稱Beyond the Quartic Equation年度引用學科排名




書目名稱Beyond the Quartic Equation讀者反饋




書目名稱Beyond the Quartic Equation讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:57:51 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:09:53 | 只看該作者
Internet Marketing and Big Data Exploitationry inherent in algebraic equations, which is closely linked to the methods required for their solution. The group-theoretical aspects of algebraic equations were first introduced by Evariste Galois (1811-1832) so that this area of mathematics is frequently called . An excellent discussion of Galois theory is given in a book by Stewart.
地板
發(fā)表于 2025-3-22 05:46:02 | 只看該作者
https://doi.org/10.1007/978-0-8176-4849-7Algebra; Galois theory; Mathematics; Quartic Equation; Tschirnhausen transformations; elliptic function; e
5#
發(fā)表于 2025-3-22 12:06:43 | 只看該作者
6#
發(fā)表于 2025-3-22 15:08:03 | 只看該作者
Internet Marketing and Big Data Exploitationry inherent in algebraic equations, which is closely linked to the methods required for their solution. The group-theoretical aspects of algebraic equations were first introduced by Evariste Galois (1811-1832) so that this area of mathematics is frequently called . An excellent discussion of Galois
7#
發(fā)表于 2025-3-22 17:05:29 | 只看該作者
R. Bruce KingAn affordable softcover edition of a classic text.Complete algorithm for roots of the general quintic equation.Key ideas accessible to non-specialists.Indroductory chapter covers group theory and symm
8#
發(fā)表于 2025-3-22 21:20:12 | 只看該作者
Modern Birkh?user Classicshttp://image.papertrans.cn/b/image/185357.jpg
9#
發(fā)表于 2025-3-23 01:48:30 | 只看該作者
10#
發(fā)表于 2025-3-23 06:17:37 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 05:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
霍州市| 电白县| 东平县| 平果县| 西峡县| 洪泽县| 泽库县| 兰州市| 新龙县| 三河市| 蒙山县| 云龙县| 延寿县| 淄博市| 西城区| 通许县| 江门市| 普格县| 大同县| 彰武县| 高唐县| 德兴市| 海阳市| 泰来县| 曲沃县| 洛南县| 比如县| 德化县| 晋州市| 湄潭县| 加查县| 凯里市| 遂昌县| 成安县| 泌阳县| 新宾| 平果县| 弥勒县| 芷江| 张家口市| 抚松县|