找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession; The Theory of Gyrogr Abraham A. Ungar Book 2001 Springer Science+Bus

[復(fù)制鏈接]
樓主: 導(dǎo)彈
41#
發(fā)表于 2025-3-28 17:31:19 | 只看該作者
Beyond the Einstein Addition Law and its Gyroscopic Thomas PrecessionThe Theory of Gyrogr
42#
發(fā)表于 2025-3-28 20:24:04 | 只看該作者
0168-1222 ing the role of hy- perbolic geometry in the special theory of relativity, initiated by Minkowski, by emphasizing the central role that hyperbolic geometry play978-0-7923-6910-3978-94-010-9122-0Series ISSN 0168-1222 Series E-ISSN 2365-6425
43#
發(fā)表于 2025-3-29 01:09:28 | 只看該作者
44#
發(fā)表于 2025-3-29 03:34:01 | 只看該作者
Thomas Precession: The Missing Link,y of gyrogroups and gyrovector spaces. The theory of gyrogroups and gyrovector spaces provides a most natural generalization of its classical counterparts, the theory of groups and the theory of vector spaces. Readers who wish to start familiarizing themselves with the theory may, therefore, start r
45#
發(fā)表于 2025-3-29 10:14:52 | 只看該作者
46#
發(fā)表于 2025-3-29 11:50:15 | 只看該作者
The Einstein Gyrovector Space,n turn, results in the emergence of the hyperbolic analytic geometry of the Einstein gyrovector space, which turns out to be the familiar Beltrami ball model of hyperbolic geometry. The ball V. is equipped with the coordinates it inherits from its real inner product space V, relative to which gyrove
47#
發(fā)表于 2025-3-29 18:20:07 | 只看該作者
The Ungar Gyrovector Space,by coordinate velocities which, in turn, are determined by coordinate time .. It would be useful, however, to understand the special theory of relativity through more than a single model. In this chapter we propose to study special relativity in terms of proper velocities, which are determined by pr
48#
發(fā)表于 2025-3-29 19:46:59 | 只看該作者
49#
發(fā)表于 2025-3-30 02:07:15 | 只看該作者
Gyrogeometry,n gives rise. We indicate in this chapter that gyrogeometry is the super geometry that naturally unifies Euclidean and hyperbolic geometry. The classical hyperbolic geometry of Bolyai and Lobachevski emerges in gyrogeometry with a companion, called cohyperbolic geometry.
50#
發(fā)表于 2025-3-30 06:41:51 | 只看該作者
,Gyrooperations — The ,(2, ,) Approach,ion. Reading this chapter would be useful for readers who are familiar, or wish to familiarize themselves, with the standard .(2,.) formalism and its Pauli spin matrices, and who wish to see how these lead to gyrogroups and gyrovector spaces. Starting from the Pauli spin matrices and a brief descrip
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 19:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
莎车县| 赤壁市| 广丰县| 包头市| 巩留县| 林周县| 无为县| 巴中市| 伊川县| 建昌县| 余干县| 阳城县| 古浪县| 辽宁省| 北流市| 扶余县| 广德县| 大洼县| 和田市| 万州区| 郑州市| 苏州市| 大化| 金堂县| 修武县| 南部县| 马公市| 永修县| 临洮县| 昌乐县| 南召县| 思南县| 茶陵县| 鸡东县| 井冈山市| 哈密市| 永昌县| 邹平县| 霍城县| 长寿区| 长丰县|