找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession; The Theory of Gyrogr Abraham A. Ungar Book 2001 Springer Science+Bus

[復制鏈接]
樓主: 導彈
11#
發(fā)表于 2025-3-23 12:41:54 | 只看該作者
https://doi.org/10.1007/978-3-319-38939-4ion. Reading this chapter would be useful for readers who are familiar, or wish to familiarize themselves, with the standard .(2,.) formalism and its Pauli spin matrices, and who wish to see how these lead to gyrogroups and gyrovector spaces. Starting from the Pauli spin matrices and a brief descrip
12#
發(fā)表于 2025-3-23 14:00:40 | 只看該作者
13#
發(fā)表于 2025-3-23 21:15:51 | 只看該作者
https://doi.org/10.1007/978-3-319-38939-4ay to the mainstream literature. Therefore, thirty three years later, two of them suggested considering the “notorious Thomas precession formula” (in their words, p. 431 in [RR99]) as an indicator of the quality of a formalism for dealing with the Lorentz group. The idea of Rindler and Robinson to u
14#
發(fā)表于 2025-3-24 01:01:02 | 只看該作者
15#
發(fā)表于 2025-3-24 03:18:58 | 只看該作者
16#
發(fā)表于 2025-3-24 07:36:04 | 只看該作者
17#
發(fā)表于 2025-3-24 11:21:23 | 只看該作者
Hyperbolic Geometry of Gyrovector Spaces,The ability of Thomas precession to unify Euclidean and hyperbolic geometry is further demonstrated in this chapter by the introduction of (i) hyperbolic rooted vectors, called rooted gyrovectors; (ii) equivalence relation between rooted gyrovectors; and (iii) translations between rooted gyrovectors, called gyrovector translations.
18#
發(fā)表于 2025-3-24 16:38:10 | 只看該作者
The Lorentz Transformation Link,The Lorentz transformation of spacetime coordinates was developed by Lorentz [Lor95] [Lorl4] [Lor16] [Lor21] [LAH23] [Poi05] from a paper of Voigt, as confirmed by Lorentz himself [Lor21], and was efficiently applied at the early development of special relativity theory by Poincaré [Poi05].
19#
發(fā)表于 2025-3-24 19:09:29 | 只看該作者
20#
發(fā)表于 2025-3-25 00:07:38 | 只看該作者
Gyrogeometry,n gives rise. We indicate in this chapter that gyrogeometry is the super geometry that naturally unifies Euclidean and hyperbolic geometry. The classical hyperbolic geometry of Bolyai and Lobachevski emerges in gyrogeometry with a companion, called cohyperbolic geometry.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 19:17
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
禹州市| 柳河县| 漯河市| 浦北县| 石棉县| 杭锦后旗| 新兴县| 卫辉市| 长宁区| 武胜县| 绵阳市| 乐都县| 甘谷县| 平邑县| 嵊泗县| 柏乡县| 平安县| 太仓市| 桃园市| 广元市| 阿拉善右旗| 沁源县| 富民县| 衢州市| 柯坪县| 济南市| 鄂温| 莆田市| 百色市| 镇远县| 赣榆县| 巫溪县| 山西省| 密山市| 修武县| 长寿区| 景泰县| 安陆市| 措美县| 河北区| 盖州市|