找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Planar Graphs; Communications of NI Seok-Hee Hong,Takeshi Tokuyama Book 2020 Springer Nature Singapore Pte Ltd. 2020 Graph Algorithm

[復(fù)制鏈接]
樓主: Intermediary
41#
發(fā)表于 2025-3-28 16:21:30 | 只看該作者
42#
發(fā)表于 2025-3-28 20:04:08 | 只看該作者
43#
發(fā)表于 2025-3-29 01:01:11 | 只看該作者
https://doi.org/10.1007/978-1-349-27478-9clude .-planar graph, .-quasiplanar graphs, .-gap-planar graphs, and .-locally planar graphs. The chapter reviews typical proof techniques, upper and lower bounds on the number of edges in these classes, as well as recent results on containment relations between these classes, and concludes with a c
44#
發(fā)表于 2025-3-29 03:45:49 | 只看該作者
45#
發(fā)表于 2025-3-29 10:55:32 | 只看該作者
Introduction to Project Finance,rded as the simplest town maps. Now, we consider a town having some pedestrian bridges, which cannot be realized by a plane graph. Its underlying graph can actually be regarded as a 1-. graph. The notion of 1-plane and 1-. graphs was first introduced by Ringel in connection with the problem of simul
46#
發(fā)表于 2025-3-29 12:03:08 | 只看該作者
https://doi.org/10.1007/978-3-030-96390-3ete. This chapter reviews the algorithmic results on 1-planar graphs. We first review a linear time algorithm for testing maximal 1-planarity of a graph if a . (i.e., the circular ordering of edges for each vertex) is given. A graph is . if the addition of an edge destroys 1-planarity. Next, we sket
47#
發(fā)表于 2025-3-29 19:26:43 | 只看該作者
48#
發(fā)表于 2025-3-29 22:19:51 | 只看該作者
Peer Stolle,Tobias Singelnsteinct graph is called .-. if it is isomorphic to a .-planar topological graph, i.e., if it can be drawn on the plane with at most . crossings per edge. While planar and 1-planar graphs have been extensively studied in the literature and their structure has been well understood, this is not the case for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长丰县| 邯郸市| 平凉市| 水城县| 阿拉善盟| 淮北市| 宽甸| 无极县| 双鸭山市| 库车县| 江源县| 白水县| 五常市| 鱼台县| 娱乐| 茌平县| 抚顺县| 苍南县| 图们市| 拜城县| 额尔古纳市| 伊宁市| 资溪县| 澄江县| 乌拉特前旗| 松江区| 泰顺县| 台中县| 周至县| 剑川县| 泸溪县| 平阳县| 青铜峡市| 彩票| 洛川县| 精河县| 府谷县| 同仁县| 保亭| 儋州市| 云浮市|