找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beyond Planar Graphs; Communications of NI Seok-Hee Hong,Takeshi Tokuyama Book 2020 Springer Nature Singapore Pte Ltd. 2020 Graph Algorithm

[復(fù)制鏈接]
樓主: Intermediary
11#
發(fā)表于 2025-3-23 10:59:05 | 只看該作者
12#
發(fā)表于 2025-3-23 17:40:12 | 只看該作者
Angular Resolutions: Around Vertices and Crossings,/total angular resolution of any straight-line drawing?of the graph. In this chapter, we review some of the results on angular resolution in the literature, and identify several open problems in the field.
13#
發(fā)表于 2025-3-23 20:45:14 | 只看該作者
Crossing Layout in Non-planar Graph Drawings,c graphs?as a way to represent crossings, the slanted layout of crossings in orthogonal graph layouts, and minimizing bundled rather than individual crossings. Further, we look at concepts such as confluent graph layout and partial edge drawings, which both have no visible crossings.
14#
發(fā)表于 2025-3-23 23:48:23 | 只看該作者
Simultaneous Embedding, of planarity. Afterward, we survey algorithmic approaches to the . problem, give an overview of recent results, and discuss their limitations. We close with a brief discussion of some recent variations of the simultaneous embedding?problem.
15#
發(fā)表于 2025-3-24 03:18:09 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:59 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:56 | 只看該作者
1-Planar Graphs,begin with formally defining 1-plane and 1-planar graphs and mainly focus on “maximal”, “maximum,” and “optimal” 1-planar graphs, which are relatively easy to treat. This chapter reviews some basic properties of these graphs.
18#
發(fā)表于 2025-3-24 17:57:54 | 只看該作者
19#
發(fā)表于 2025-3-24 19:59:35 | 只看該作者
and objectives of this book include 1) to timely provide a state-of-the-art survey and a bibliography on beyond planar graphs; 2) to set the research agenda on beyond planar graphs by identifying fundamental r978-981-15-6535-9978-981-15-6533-5
20#
發(fā)表于 2025-3-24 23:19:56 | 只看該作者
Edge Partitions and Visibility Representations of 1-planar Graphs, studied for planar graphs, they recently attracted attention also for 1-planar graphs, i.e., those graphs that can be drawn in the plane such that each edge is crossed at most once. After giving an overview of 1-planarity, we survey the main results concerning edge partitions and visibility represe
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 17:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾川县| 南宁市| 布拖县| 增城市| 当阳市| 霸州市| 卓资县| 孝昌县| 凌源市| 马公市| 边坝县| 民县| 崇明县| 桓仁| 虹口区| 南乐县| 托克逊县| 宜昌市| 吴桥县| 博湖县| 高雄市| 咸丰县| 耿马| 马尔康县| 资源县| 印江| 双峰县| 郸城县| 彰化市| 汉川市| 抚顺市| 甘南县| 河曲县| 弋阳县| 凤山县| 洪湖市| 秦皇岛市| 绿春县| 仪陇县| 肃宁县| 泉州市|