找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bernoulli Numbers and Zeta Functions; Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko Book 2014 Springer Japan 2014 Bernoulli numbers a

[復(fù)制鏈接]
樓主: 挑染
21#
發(fā)表于 2025-3-25 04:54:40 | 只看該作者
Injuries and Health Problems in Footballtheory of quadratic fields and quadratic forms. Since Gauss, it is well known that there is a deep relation between the ideal theory of quadratic fields (i.e. quadratic extensions of the rational number field) and integral quadratic forms. This is obvious for specialists, but textbooks which explain
22#
發(fā)表于 2025-3-25 10:06:46 | 只看該作者
23#
發(fā)表于 2025-3-25 15:15:17 | 只看該作者
Epidemiology: The Most Frequent Lesionsormulas between exponential sums or character sums and Bernoulli numbers. We often encounter such formulas when we compare the dimension formulas of modular forms obtained by the Riemann–Roch theorem and by the trace formula. Often, the exponential sums appear in the first method and the Bernoulli n
24#
發(fā)表于 2025-3-25 18:23:58 | 只看該作者
Injury in Athletics: Coaches’ Point of Viewand functional equation, and calculate their special values at negative integers. There are various proofs for the functional equation; here we explain the method using a contour integral. Although there would be a viewpoint that it would be too much to introduce a contour integral, it is interestin
25#
發(fā)表于 2025-3-25 23:10:19 | 只看該作者
Interviews with Injured Athletes so-called prehomogeneous vector spaces. We also prove a class number formula of imaginary quadratic fields. Before that, we review the theory of multiplicative structure of ideals of quadratic field without proof.
26#
發(fā)表于 2025-3-26 03:12:18 | 只看該作者
Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu KanekoEnables readers to begin reading without any prerequisite and smoothly guides them to more advanced topics in number theory.Provides repeated treatment, from different viewpoints, of both easy and adv
27#
發(fā)表于 2025-3-26 04:26:24 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/b/image/183881.jpg
28#
發(fā)表于 2025-3-26 09:23:55 | 只看該作者
,Theorem of Clausen and von Staudt, and Kummer’s Congruence,l part” of .. is given by the following theorem. This result gives a foundation for studying .-adic properties of the Bernoulli numbers. It also plays a fundamental role in the theory of .-adic modular forms through the Eisenstein series [82].
29#
發(fā)表于 2025-3-26 14:59:00 | 只看該作者
Generalized Bernoulli Numbers, Dirichlet character, which we define at the beginning of the first section. Bernoulli polynomials are generalizations of Bernoulli numbers with an indeterminate. These two generalizations are related, and they will appear in various places in the following chapters.
30#
發(fā)表于 2025-3-26 17:17:12 | 只看該作者
Class Number Formula and an Easy Zeta Function of the Space of Quadratic Forms, so-called prehomogeneous vector spaces. We also prove a class number formula of imaginary quadratic fields. Before that, we review the theory of multiplicative structure of ideals of quadratic field without proof.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德清县| 九寨沟县| 罗田县| 台中市| 延川县| 兴国县| 屏东市| 海林市| 东平县| 永平县| 思南县| 洱源县| 大荔县| 麻城市| 齐齐哈尔市| 吴忠市| 满洲里市| 正镶白旗| 吉木萨尔县| 乌海市| 道真| 临高县| 会泽县| 临海市| 屏东县| 武穴市| 陵川县| 丹巴县| 四平市| 天等县| 嘉义县| 京山县| 清徐县| 清丰县| 铁力市| 延庆县| 海伦市| 黄山市| 上高县| 舞钢市| 罗平县|