找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bernoulli Numbers and Zeta Functions; Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko Book 2014 Springer Japan 2014 Bernoulli numbers a

[復(fù)制鏈接]
查看: 53546|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:48:16 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Bernoulli Numbers and Zeta Functions
影響因子2023Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko
視頻videohttp://file.papertrans.cn/184/183881/183881.mp4
發(fā)行地址Enables readers to begin reading without any prerequisite and smoothly guides them to more advanced topics in number theory.Provides repeated treatment, from different viewpoints, of both easy and adv
學(xué)科分類Springer Monographs in Mathematics
圖書封面Titlebook: Bernoulli Numbers and Zeta Functions;  Tsuneo Arakawa,Tomoyoshi Ibukiyama,Masanobu Kaneko Book 2014 Springer Japan 2014 Bernoulli numbers a
影響因子.Two major subjects are treated in this book. The main one is the theory of Bernoulli numbers and the other is the theory of zeta functions. Historically, Bernoulli numbers were introduced to give formulas for the sums of powers of consecutive integers. The real reason that they are indispensable for number theory, however, lies in the fact that special values of the Riemann zeta function can be written by using Bernoulli numbers. This leads to more advanced topics, a number of which are treated in this book: Historical remarks on Bernoulli numbers and the formula for the sum of powers of consecutive integers; a formula for Bernoulli numbers by Stirling numbers; the Clausen–von Staudt theorem on the denominators of Bernoulli numbers; Kummer‘s congruence between Bernoulli numbers and a related theory of .p.-adic measures; the Euler–Maclaurin summation formula; the functional equation of the Riemann zeta function and the Dirichlet L functions, and their special values at suitableintegers; various formulas of exponential sums expressed by generalized Bernoulli numbers; the relation between ideal classes of orders of quadratic fields and equivalence classes of binary quadratic forms; c
Pindex Book 2014
The information of publication is updating

書目名稱Bernoulli Numbers and Zeta Functions影響因子(影響力)




書目名稱Bernoulli Numbers and Zeta Functions影響因子(影響力)學(xué)科排名




書目名稱Bernoulli Numbers and Zeta Functions網(wǎng)絡(luò)公開度




書目名稱Bernoulli Numbers and Zeta Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Bernoulli Numbers and Zeta Functions被引頻次




書目名稱Bernoulli Numbers and Zeta Functions被引頻次學(xué)科排名




書目名稱Bernoulli Numbers and Zeta Functions年度引用




書目名稱Bernoulli Numbers and Zeta Functions年度引用學(xué)科排名




書目名稱Bernoulli Numbers and Zeta Functions讀者反饋




書目名稱Bernoulli Numbers and Zeta Functions讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:35:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:53:13 | 只看該作者
地板
發(fā)表于 2025-3-22 05:22:46 | 只看該作者
5#
發(fā)表于 2025-3-22 11:07:03 | 只看該作者
https://doi.org/10.1007/978-0-387-72577-2In this chapter, we introduce Barnes’ multiple zeta function, which is a natural generalization of the Hurwitz zeta function, give an analytic continuation, and then express their special values at negative integers by using Bernoulli polynomials.
6#
發(fā)表于 2025-3-22 14:59:38 | 只看該作者
7#
發(fā)表于 2025-3-22 17:26:02 | 只看該作者
8#
發(fā)表于 2025-3-22 23:49:59 | 只看該作者
,The Euler–Maclaurin Summation Formula and the Riemann Zeta Function,In this chapter we give a formula that describes Bernoulli numbers in terms of Stirling numbers. This formula will be used to prove a theorem of Clausen and von Staudtin the next chapter. As an application of this formula, we also introduce an interesting algorithm to compute Bernoulli numbers.
9#
發(fā)表于 2025-3-23 02:35:22 | 只看該作者
10#
發(fā)表于 2025-3-23 08:36:43 | 只看該作者
Hurwitz Numbers,In this section, we briefly introduce Hurwitz’s Hurwitz generalization of Bernoulli numbers, known as the Hurwitz numbers.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绩溪县| 澄迈县| 大足县| 湘潭县| 垦利县| 阿拉善盟| 吉林省| 乐昌市| 桃园县| 古丈县| 壤塘县| 禄劝| 格尔木市| 昌平区| 西盟| 北碚区| 隆昌县| 黎平县| 色达县| 宕昌县| 稷山县| 中山市| 内江市| 荆门市| 剑川县| 田阳县| 武隆县| 修水县| 商城县| 上杭县| 上犹县| 太仓市| 康平县| 读书| 旬阳县| 荆州市| 北川| 文登市| 石家庄市| 灵武市| 河北省|