找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Berechenbarkeit; Rekursive und Progra Walter Felscher Textbook 1993 Springer-Verlag Berlin Heidelberg 1993 Berechenbarkeit.Beweis.Funktion.

[復(fù)制鏈接]
樓主: centipede
31#
發(fā)表于 2025-3-27 00:45:02 | 只看該作者
Stéphane Goldstein,Andrew Whitworthm?ge a, r. definiert, wenn für alle ihre Argumente die . . oder . gelten. (SPR.) reduziert sich auf (SPR), sofern die konstanten Funktionen c(math) und Superpositionen zur Verfügung stehen: ist f. verm?ge a und r. definiert und definiere ich f. verm?ge c. und r. = r.°, so erhalte ich f. als f.°.
32#
發(fā)表于 2025-3-27 04:14:39 | 只看該作者
33#
發(fā)表于 2025-3-27 05:58:26 | 只看該作者
34#
發(fā)表于 2025-3-27 10:54:46 | 只看該作者
35#
發(fā)表于 2025-3-27 13:59:12 | 只看該作者
978-3-540-56354-9Springer-Verlag Berlin Heidelberg 1993
36#
發(fā)表于 2025-3-27 18:48:43 | 只看該作者
37#
發(fā)表于 2025-3-28 00:19:28 | 只看該作者
Stéphane Goldstein,Andrew Whitworthnderem Interesse; allein die Bildungsprinzipien, unter denen sie entsteht, werden in sp?teren Kapiteln so h?ufig verwendet werden, da? es als angebracht erscheint, ihre Wirkung hier zu isolieren. Wie auch alle sp?terhin zu untersuchenden Funktionenklassen, wird die der simplen Funktionen, ausgehend
38#
發(fā)表于 2025-3-28 03:31:55 | 只看該作者
Stéphane Goldstein,Andrew Whitworthm?ge a, r. definiert, wenn für alle ihre Argumente die . . oder . gelten. (SPR.) reduziert sich auf (SPR), sofern die konstanten Funktionen c(math) und Superpositionen zur Verfügung stehen: ist f. verm?ge a und r. definiert und definiere ich f. verm?ge c. und r. = r.°, so erhalte ich f. als
39#
發(fā)表于 2025-3-28 10:03:40 | 只看該作者
40#
發(fā)表于 2025-3-28 13:40:16 | 只看該作者
Bernhard C. Geiger,Gernot Kubinn von f, die man unter (von dem hier geübten abweichendem) Gebrauch oberer Indizes auch h?ufig als f. notiert: f. ist f selbst, und f. ist die Komposition f.f.; erkl?rt man f° als die Identit?t, so folgt f. = f bereits aus dieser Rekursionsformel. Hier allerdings ziehe ich es vor, unter der .f von f
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新郑市| 湘西| 开鲁县| 石城县| 舟曲县| 普兰店市| 武义县| 新巴尔虎右旗| 新和县| 华亭县| 塔城市| 灵山县| 哈尔滨市| 神木县| 清镇市| 稻城县| 珲春市| 白水县| 龙江县| 广安市| 太谷县| 卫辉市| 毕节市| 安平县| 浠水县| 河北省| 太仆寺旗| 安远县| 白山市| 神农架林区| 虎林市| 彭水| 松原市| 嘉义市| 探索| 紫云| 波密县| 社会| 临澧县| 望谟县| 奈曼旗|