找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Revision in Non-Classical Logics; Márcio Moretto Ribeiro Book 2013 The Author(s) 2013 AGM Theory.Belief Revision.Knowledge Represen

[復(fù)制鏈接]
樓主: cerebral-cortex
11#
發(fā)表于 2025-3-23 12:29:51 | 只看該作者
12#
發(fā)表于 2025-3-23 15:16:21 | 只看該作者
Robert Obermaier,Victoria Kirscha logic as a pair . such that . is the .of the logic and . is the .. that gives the consequences of a set of sentences..We are particularly interested in Tarskian logics and certain properties that they may satisfy e.g., compactness, decomposability, distribuitivity, etc. In this chapter, Tarskian l
13#
發(fā)表于 2025-3-23 18:43:32 | 只看該作者
14#
發(fā)表于 2025-3-24 01:41:59 | 只看該作者
15#
發(fā)表于 2025-3-24 05:31:07 | 只看該作者
https://doi.org/10.1007/978-3-658-16527-7 In order to avoid the undesirable consequences of recovery, Hansson proposes to exchange it by a postulate called .. However, in classical logics relevance and recovery are equivalent. In this chapter, we defend the use of relevance instead of recovery in non-classical logics for mainly three reaso
16#
發(fā)表于 2025-3-24 07:35:02 | 只看該作者
17#
發(fā)表于 2025-3-24 11:46:44 | 只看該作者
18#
發(fā)表于 2025-3-24 18:35:17 | 只看該作者
Industrie 4.0 bei Hidden Championsnt algorithms for computing these sets. The similarities between the algorithms suggests that they are deeply related. We present this relation formally and show examples where computing the remainder set is much easier than computing the kernel and examples where the opposite is the case.
19#
發(fā)表于 2025-3-24 20:11:34 | 只看該作者
Industrie 4.0 bei Hidden Championsf logics that fail to satisfy these assumptions, e.g., most DLs, Horn logic, and intuitionistic logic. After that we presented ways of adapting classical belief revision in order for it to be compliant with a wider class of logics. In the case of belief set contraction we showed that this can be ach
20#
發(fā)表于 2025-3-24 23:24:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
靖州| 新丰县| 宾川县| 九龙县| 繁昌县| 峨山| 金山区| 凤山县| 嘉义市| 鲁甸县| 澄迈县| 筠连县| 广宁县| 元阳县| 宁远县| 德保县| 新化县| 四子王旗| 项城市| 北安市| 林口县| 麻栗坡县| 浑源县| 郴州市| 金乡县| 如东县| 富民县| 昔阳县| 饶阳县| 金乡县| 新津县| 土默特右旗| 德令哈市| 施秉县| 永定县| 桑日县| 大邑县| 吴川市| 灵宝市| 曲水县| 广州市|