找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 7th International Co Sylvie Le Hégarat-Mascle,Isabelle Bloch,Emanuel Al Conference proceedings 2

[復制鏈接]
樓主: 衰退
21#
發(fā)表于 2025-3-25 07:08:52 | 只看該作者
Industrialismus und ?koromantiknce. We show that in the particular case where the focal sets of the belief function are Cartesian products of intervals, finding best, ., non-dominated, paths according to these criteria amounts to solving known variants of the deterministic shortest path problem, for which exact resolution algorithms exist.
22#
發(fā)表于 2025-3-25 09:20:56 | 只看該作者
Evidential Clustering by?Competitive Agglomeration since it can mine the ambiguity and uncertainty of the data structure; secondly, through a competitive strategy, it can automatically gain the number of clusters under the rule of intra-class compactness and inter-class dispersion. Results demonstrate the effectiveness of the proposed method on synthetic and real-world datasets.
23#
發(fā)表于 2025-3-25 15:00:03 | 只看該作者
Belief Functions on?Ordered Frames of?Discernmentisjunctive combination. We also study distances on ordered elements and their use. In particular, from a membership function, we redefine the cardinality of the intersection of ordered elements, considering them fuzzy.
24#
發(fā)表于 2025-3-25 18:32:20 | 只看該作者
25#
發(fā)表于 2025-3-25 20:22:51 | 只看該作者
A Variational Bayesian Clustering Approach to?Acoustic Emission Interpretation Including Soft Labelsused in non-destructive testing. This model, called VBGMM (variational Bayesian GMM) allows the end-user to automatically determine the number of clusters which makes it relevant for this type of application where clusters are related to damages. In this work, we modify the training procedure to inc
26#
發(fā)表于 2025-3-26 03:34:12 | 只看該作者
27#
發(fā)表于 2025-3-26 05:39:16 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:05 | 只看該作者
29#
發(fā)表于 2025-3-26 12:44:31 | 只看該作者
Ordinal Classification Using Single-Model Evidential Extreme Learning Machine theory, in this paper, the single-model multi-output extreme learning machine is learned from evidential training data. Taking both the uncertainty and the ordering relation of labels into consideration, given mass functions of training labels, different evidential encoding schemes for model output
30#
發(fā)表于 2025-3-26 20:19:24 | 只看該作者
Reliability-Based Imbalanced Data Classification with?Dempster-Shafer Theorythe minority class. This paper proposes a reliability-based imbalanced data classification approach (RIC) with Dempster-Shafer theory to address this issue. First, based on the minority class, multiple under-sampling for the majority one are implemented to obtain the corresponding balanced training
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵阳市| 手游| 安阳市| 贵南县| 鹤壁市| 扬州市| 永定县| 陇川县| 体育| 松滋市| 嵊泗县| 广宗县| 舟曲县| 阳江市| 霍林郭勒市| 翁源县| 东丰县| 宁夏| 阿克| 巧家县| 肥东县| 古蔺县| 靖远县| 武汉市| 平顶山市| 富阳市| 涟源市| 梨树县| 夹江县| 嵊州市| 缙云县| 汕头市| 亚东县| 庐江县| 阜平县| 西平县| 黔西县| 金沙县| 曲靖市| 玛纳斯县| 江永县|