找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 7th International Co Sylvie Le Hégarat-Mascle,Isabelle Bloch,Emanuel Al Conference proceedings 2

[復制鏈接]
查看: 6323|回復: 52
樓主
發(fā)表于 2025-3-21 17:12:47 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Belief Functions: Theory and Applications
期刊簡稱7th International Co
影響因子2023Sylvie Le Hégarat-Mascle,Isabelle Bloch,Emanuel Al
視頻videohttp://file.papertrans.cn/184/183302/183302.mp4
學科分類Lecture Notes in Computer Science
圖書封面Titlebook: Belief Functions: Theory and Applications; 7th International Co Sylvie Le Hégarat-Mascle,Isabelle Bloch,Emanuel Al Conference proceedings 2
影響因子This book constitutes the refereed proceedings of the 7th International Conference on Belief Functions, BELIEF 2022, held in Paris, France, in October 2022..The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well-understood connections to other frameworks such as probability, possibility, and imprecise probability theories. It has been applied in diverse areas such as machine learning, information fusion, and pattern recognition...The 29 full papers presented in this book were carefully selected and reviewed from 31 submissions. The papers cover a wide range on theoretical aspects on mathematical foundations, statistical inference as well as on applications in various areas including classification, clustering, data fusion, image processing, and much more..
Pindex Conference proceedings 2022
The information of publication is updating

書目名稱Belief Functions: Theory and Applications影響因子(影響力)




書目名稱Belief Functions: Theory and Applications影響因子(影響力)學科排名




書目名稱Belief Functions: Theory and Applications網絡公開度




書目名稱Belief Functions: Theory and Applications網絡公開度學科排名




書目名稱Belief Functions: Theory and Applications被引頻次




書目名稱Belief Functions: Theory and Applications被引頻次學科排名




書目名稱Belief Functions: Theory and Applications年度引用




書目名稱Belief Functions: Theory and Applications年度引用學科排名




書目名稱Belief Functions: Theory and Applications讀者反饋




書目名稱Belief Functions: Theory and Applications讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:19:12 | 只看該作者
Themenmotivation und Gang der Untersuchung,at can be summarized by three numbers characterizing the most plausible predicted value, variability around this value, and epistemic uncertainty. Experiments with real datasets demonstrate the very good performance of the method as compared to state-of-the-art evidential and statistical learning algorithms.
板凳
發(fā)表于 2025-3-22 01:04:55 | 只看該作者
Themenmotivation und Gang der Untersuchung,assifier, which can be scaled to 48 nodes (2688 cores) at a cluster named the Texas Advanced Computing Center Frontera, with several other parallel K-NN based algorithms over 4 large datasets. Our method is able to achieve state-of-the-art scaling efficiency and accuracy on the large datasets having more than 10 million samples.
地板
發(fā)表于 2025-3-22 05:12:21 | 只看該作者
Conference proceedings 2022 2022..The theory of belief functions is now well established as a general framework for reasoning with uncertainty, and has well-understood connections to other frameworks such as probability, possibility, and imprecise probability theories. It has been applied in diverse areas such as machine lear
5#
發(fā)表于 2025-3-22 08:58:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:24:07 | 只看該作者
An Evidential Neural Network Model for?Regression Based on?Random Fuzzy Numbersat can be summarized by three numbers characterizing the most plausible predicted value, variability around this value, and epistemic uncertainty. Experiments with real datasets demonstrate the very good performance of the method as compared to state-of-the-art evidential and statistical learning algorithms.
7#
發(fā)表于 2025-3-22 20:50:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:45:20 | 只看該作者
9#
發(fā)表于 2025-3-23 02:56:09 | 只看該作者
0302-9743 ubmissions. The papers cover a wide range on theoretical aspects on mathematical foundations, statistical inference as well as on applications in various areas including classification, clustering, data fusion, image processing, and much more..978-3-031-17800-9978-3-031-17801-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
10#
發(fā)表于 2025-3-23 07:50:37 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
万年县| 荔波县| 和政县| 友谊县| 大足县| 丹阳市| 河曲县| 凤庆县| 仙桃市| 罗江县| 于田县| 多伦县| 肥东县| 贞丰县| 灯塔市| 沛县| 湘潭市| 长武县| 桐柏县| 长乐市| 任丘市| 东方市| 邯郸县| 湟中县| 松溪县| 拉孜县| 江山市| 大姚县| 宿松县| 丹江口市| 铜川市| 太保市| 正定县| 芜湖县| 铁力市| 遂昌县| 东海县| 遵化市| 万全县| 隆林| 山丹县|