找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 5th International Co Sébastien Destercke,Thierry Denoeux,Arnaud Martin Conference proceedings 20

[復(fù)制鏈接]
樓主: 太平間
41#
發(fā)表于 2025-3-28 15:04:11 | 只看該作者
General Geometry of Belief Function Combination,including Yager’s, Dubois’, and disjunctive combination, starting from the case of binary frames of discernment. Believability measures for unnormalised belief functions are also considered. A research programme to complete this analysis is outlined.
42#
發(fā)表于 2025-3-28 19:44:48 | 只看該作者
43#
發(fā)表于 2025-3-28 23:35:37 | 只看該作者
44#
發(fā)表于 2025-3-29 04:34:54 | 只看該作者
45#
發(fā)表于 2025-3-29 07:52:57 | 只看該作者
46#
發(fā)表于 2025-3-29 13:10:46 | 只看該作者
,Study of Distributed Data Fusion Using Dempster’s Rule and Cautious Operator,unctions to model uncertainties has been proposed for smart cars network. Since the origin of data coming from other cars is unknown, this algorithm uses the idempotent cautious operator in order to prevent data incest. This operator has been proved to be efficient in the case of transient errors an
47#
發(fā)表于 2025-3-29 16:49:02 | 只看該作者
Uncertainty-Aware Parzen-Rosenblatt Classifier for Multiattribute Data,meworks proposed in this area, determining the basic probability assignment remains an open issue. To address this problem, this paper proposes a novel Dempster-Shafer scheme based on Parzen-Rosenblatt windowing for multi-attribute data classification. More explicitly, training data are used to cons
48#
發(fā)表于 2025-3-29 21:39:29 | 只看該作者
49#
發(fā)表于 2025-3-30 00:57:33 | 只看該作者
Evidential Independence Maximization on Twitter Network,y are independent in their choices and decisions. Independent users may attract other users and make them adopt their point of view. A user is qualified as independent when his/her point of view does not depend on others ideas. Thus, the behavior of such a user is independent from other behaviors. D
50#
發(fā)表于 2025-3-30 07:47:19 | 只看該作者
An Evidential ,-nearest Neighbors Combination Rule for Tree Species Recognition,.-nearest neighbors (.-NN) combination rule. The proposed rule is adapted to classification problems where we have a large number of classes with an intra-class variability and an inter-class similarity like the problem of tree species recognition. Finally, we compare the performance of the proposed
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
内乡县| 孟村| 麟游县| 温州市| 靖西县| 连南| 于田县| 綦江县| 普陀区| 温宿县| 琼结县| 洛阳市| 龙井市| 商洛市| 汉源县| 青龙| 武穴市| 无锡市| 双江| 漯河市| 怀来县| 玛纳斯县| 油尖旺区| 赫章县| 调兵山市| 海淀区| 旬阳县| 武义县| 思南县| 甘泉县| 磐石市| 夏津县| 冷水江市| 敦化市| 五河县| 东阿县| 郧西县| 荣昌县| 新郑市| 赣榆县| 辉南县|