找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Belief Functions: Theory and Applications; 5th International Co Sébastien Destercke,Thierry Denoeux,Arnaud Martin Conference proceedings 20

[復制鏈接]
樓主: 太平間
31#
發(fā)表于 2025-3-26 21:05:44 | 只看該作者
32#
發(fā)表于 2025-3-27 03:11:31 | 只看該作者
Formal Methods Through Domain Engineering,operty that characterizes Shannon’s definitions of entropy and conditional entropy for discrete probability distributions. None of the existing definitions of entropy for belief functions in the D-S theory satisfy such a compound distributions property. We describe some important properties of our definition.
33#
發(fā)表于 2025-3-27 06:10:08 | 只看該作者
Vicki V. Vandaveer,Tracey E. RizzutoWe propose the use of Smets and PCR5 rules to merge artificial geophysical and geotechnical data, as part of fluvial levee assessment. It highlights the ability to characterize the presence of interfaces and a geological anomaly.
34#
發(fā)表于 2025-3-27 09:39:56 | 只看該作者
35#
發(fā)表于 2025-3-27 17:06:40 | 只看該作者
An Evidential Collaborative Filtering Approach Based on Items Contents Clustering,king process. Among the various recommendation approaches, Collaborative Filtering (CF) is considered as one of the most popular techniques in RSs. CF techniques are categorized into model-based and memory-based. Model-based approaches consist in learning a model from past ratings to perform predict
36#
發(fā)表于 2025-3-27 19:32:25 | 只看該作者
The Belief Functions Theory for Sensors Localization in Indoor Wireless Networks,zation where the objective is to determine the zone where the mobile sensor resides at any instant. The proposed approach uses the belief functions theory to define an evidence framework, for estimating the most probable sensor’s zone. Real experiments demonstrate the effectiveness of this approach
37#
發(fā)表于 2025-3-28 01:59:07 | 只看該作者
On Evidential Clustering with Partial Supervision, a credal partition coherent with the background knowledge. The main characteristics of the new method is its ability to express the uncertainties of partial prior information by assigning each constrained object to a set of labels. It enriches previous existing algorithm that allows the preservatio
38#
發(fā)表于 2025-3-28 04:57:22 | 只看該作者
Exploiting Domain-Experts Knowledge Within an Evidential Process for Case Base Maintenance,to improve their problem-solving performance and competence. However, to the best of our knowledge, all of them are not able to make use of prior knowledge which can be offered by domain experts, especially that CBR is widely applied in real-life domains. For instance, given symptoms of two differen
39#
發(fā)表于 2025-3-28 06:17:20 | 只看該作者
40#
發(fā)表于 2025-3-28 11:56:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 05:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
元江| 郴州市| 维西| 洪雅县| 江华| 芦山县| 中江县| 厦门市| 巴林左旗| 和龙市| 宜章县| 永城市| 无棣县| 隆回县| 华容县| 庆元县| 明溪县| 托里县| 祁东县| 泰安市| 会泽县| 泽普县| 遵义县| 龙口市| 阿鲁科尔沁旗| 大城县| 旬阳县| 敦煌市| 吴川市| 钟祥市| 武义县| 庆城县| 同江市| 嘉峪关市| 岑溪市| 陕西省| 乌拉特中旗| 兴文县| 红河县| 屯门区| 富裕县|