找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Deep Learning with TensorFlow; Work with Keras, MNI Liangqu Long,Xiangming Zeng Book 2022 Liangqu Long and Xiangming Zeng 2022 T

[復(fù)制鏈接]
查看: 7744|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:18:57 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Beginning Deep Learning with TensorFlow
期刊簡稱Work with Keras, MNI
影響因子2023Liangqu Long,Xiangming Zeng
視頻videohttp://file.papertrans.cn/183/182304/182304.mp4
發(fā)行地址Follow along with hands-on coding to discover deep learning from scratch.Tackle different neural network models using the latest frameworks.Take advantage of years of online research to learn TensorFl
圖書封面Titlebook: Beginning Deep Learning with TensorFlow; Work with Keras, MNI Liangqu Long,Xiangming Zeng Book 2022 Liangqu Long and Xiangming Zeng  2022 T
影響因子Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learners.?.You’ll start with an introduction to AI, where you’ll learn the history of neural networks and what sets deep learning apart from other varieties of machine learning. Discovery the variety of deep learning frameworks and set-up a deep learning development environment. Next, you’ll jump into simple classification programs for hand-writing analysis. Once you’ve tackled the basics of deep learning, you move on to TensorFlow 2 specifically. Find out what exactly a Tensor is and how to work with MNIST datasets. Finally, you’ll get into the heavy lifting of programming neural networks ?and working with a wide variety of neural network types such as GANs andRNNs.??.Deep Learning is a new area of Machine Learning research widely used in popular applications, such as voice assistant and self-driving cars. Work through the hands-on material in this book and become a TensorFlow programmer!? ?
Pindex Book 2022
The information of publication is updating

書目名稱Beginning Deep Learning with TensorFlow影響因子(影響力)




書目名稱Beginning Deep Learning with TensorFlow影響因子(影響力)學(xué)科排名




書目名稱Beginning Deep Learning with TensorFlow網(wǎng)絡(luò)公開度




書目名稱Beginning Deep Learning with TensorFlow網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Beginning Deep Learning with TensorFlow被引頻次




書目名稱Beginning Deep Learning with TensorFlow被引頻次學(xué)科排名




書目名稱Beginning Deep Learning with TensorFlow年度引用




書目名稱Beginning Deep Learning with TensorFlow年度引用學(xué)科排名




書目名稱Beginning Deep Learning with TensorFlow讀者反饋




書目名稱Beginning Deep Learning with TensorFlow讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:37 | 只看該作者
Valerie J. H. Powell,Franklin M. Ding the perceptron model, multi-input and multi-output fully connected layers; and then expanding to multilayer neural networks. We also introduced the design of the output layer under different scenarios and the commonly used loss functions and their implementation.
板凳
發(fā)表于 2025-3-22 01:50:42 | 只看該作者
Stephen Foreman,Joseph Kilsdonk,Kelly Boggs We call this the generalization ability. Generally speaking, the training set and the test set are sampled from the same data distribution. The sampled samples are independent of each other, but come from the same distribution. We call this assumption the independent identical distribution (i.i.d.) assumption.
地板
發(fā)表于 2025-3-22 08:20:09 | 只看該作者
Monitoring of membrane bioreactorso implement. It is very stable when trained using neural networks, and the resulting images are more approximate, but the human eyes can still easily distinguish real pictures and machine-generated pictures.
5#
發(fā)表于 2025-3-22 10:31:36 | 只看該作者
Neural Networks,om the training set and use the trained relationship to predict new samples. Neural networks belong to a branch of research in machine learning. It specifically refers to a model that uses multiple neurons to parameterize the mapping function ..
6#
發(fā)表于 2025-3-22 15:29:43 | 只看該作者
7#
發(fā)表于 2025-3-22 20:48:38 | 只看該作者
Overfitting, We call this the generalization ability. Generally speaking, the training set and the test set are sampled from the same data distribution. The sampled samples are independent of each other, but come from the same distribution. We call this assumption the independent identical distribution (i.i.d.) assumption.
8#
發(fā)表于 2025-3-22 23:25:40 | 只看該作者
Generative Adversarial Networks,o implement. It is very stable when trained using neural networks, and the resulting images are more approximate, but the human eyes can still easily distinguish real pictures and machine-generated pictures.
9#
發(fā)表于 2025-3-23 03:27:47 | 只看該作者
10#
發(fā)表于 2025-3-23 09:07:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
张家界市| 桃江县| 宁远县| 乐都县| 仙居县| 新乐市| 六枝特区| 双辽市| 安吉县| 高唐县| 濮阳市| 英吉沙县| 株洲市| 绥阳县| 仁怀市| 广水市| 保靖县| 凤城市| 呼伦贝尔市| 青川县| 阜阳市| 平定县| 理塘县| 呼伦贝尔市| 张家川| 贵定县| 安吉县| 南宁市| 抚远县| 商洛市| 敦化市| 山丹县| 井冈山市| 南皮县| 乌兰浩特市| 凯里市| 静宁县| 长武县| 莫力| 沁源县| 常山县|