找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Deep Learning with TensorFlow; Work with Keras, MNI Liangqu Long,Xiangming Zeng Book 2022 Liangqu Long and Xiangming Zeng 2022 T

[復(fù)制鏈接]
查看: 7754|回復(fù): 57
樓主
發(fā)表于 2025-3-21 17:18:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Beginning Deep Learning with TensorFlow
期刊簡(jiǎn)稱Work with Keras, MNI
影響因子2023Liangqu Long,Xiangming Zeng
視頻videohttp://file.papertrans.cn/183/182304/182304.mp4
發(fā)行地址Follow along with hands-on coding to discover deep learning from scratch.Tackle different neural network models using the latest frameworks.Take advantage of years of online research to learn TensorFl
圖書(shū)封面Titlebook: Beginning Deep Learning with TensorFlow; Work with Keras, MNI Liangqu Long,Xiangming Zeng Book 2022 Liangqu Long and Xiangming Zeng  2022 T
影響因子Incorporate deep learning into your development projects through hands-on coding and the latest versions of deep learning software, such as TensorFlow 2 and Keras. The materials used in this book are based on years of successful online education experience and feedback from thousands of online learners.?.You’ll start with an introduction to AI, where you’ll learn the history of neural networks and what sets deep learning apart from other varieties of machine learning. Discovery the variety of deep learning frameworks and set-up a deep learning development environment. Next, you’ll jump into simple classification programs for hand-writing analysis. Once you’ve tackled the basics of deep learning, you move on to TensorFlow 2 specifically. Find out what exactly a Tensor is and how to work with MNIST datasets. Finally, you’ll get into the heavy lifting of programming neural networks ?and working with a wide variety of neural network types such as GANs andRNNs.??.Deep Learning is a new area of Machine Learning research widely used in popular applications, such as voice assistant and self-driving cars. Work through the hands-on material in this book and become a TensorFlow programmer!? ?
Pindex Book 2022
The information of publication is updating

書(shū)目名稱Beginning Deep Learning with TensorFlow影響因子(影響力)




書(shū)目名稱Beginning Deep Learning with TensorFlow影響因子(影響力)學(xué)科排名




書(shū)目名稱Beginning Deep Learning with TensorFlow網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Beginning Deep Learning with TensorFlow網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Beginning Deep Learning with TensorFlow被引頻次




書(shū)目名稱Beginning Deep Learning with TensorFlow被引頻次學(xué)科排名




書(shū)目名稱Beginning Deep Learning with TensorFlow年度引用




書(shū)目名稱Beginning Deep Learning with TensorFlow年度引用學(xué)科排名




書(shū)目名稱Beginning Deep Learning with TensorFlow讀者反饋




書(shū)目名稱Beginning Deep Learning with TensorFlow讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:24:37 | 只看該作者
Valerie J. H. Powell,Franklin M. Ding the perceptron model, multi-input and multi-output fully connected layers; and then expanding to multilayer neural networks. We also introduced the design of the output layer under different scenarios and the commonly used loss functions and their implementation.
板凳
發(fā)表于 2025-3-22 01:50:42 | 只看該作者
Stephen Foreman,Joseph Kilsdonk,Kelly Boggs We call this the generalization ability. Generally speaking, the training set and the test set are sampled from the same data distribution. The sampled samples are independent of each other, but come from the same distribution. We call this assumption the independent identical distribution (i.i.d.) assumption.
地板
發(fā)表于 2025-3-22 08:20:09 | 只看該作者
Monitoring of membrane bioreactorso implement. It is very stable when trained using neural networks, and the resulting images are more approximate, but the human eyes can still easily distinguish real pictures and machine-generated pictures.
5#
發(fā)表于 2025-3-22 10:31:36 | 只看該作者
Neural Networks,om the training set and use the trained relationship to predict new samples. Neural networks belong to a branch of research in machine learning. It specifically refers to a model that uses multiple neurons to parameterize the mapping function ..
6#
發(fā)表于 2025-3-22 15:29:43 | 只看該作者
7#
發(fā)表于 2025-3-22 20:48:38 | 只看該作者
Overfitting, We call this the generalization ability. Generally speaking, the training set and the test set are sampled from the same data distribution. The sampled samples are independent of each other, but come from the same distribution. We call this assumption the independent identical distribution (i.i.d.) assumption.
8#
發(fā)表于 2025-3-22 23:25:40 | 只看該作者
Generative Adversarial Networks,o implement. It is very stable when trained using neural networks, and the resulting images are more approximate, but the human eyes can still easily distinguish real pictures and machine-generated pictures.
9#
發(fā)表于 2025-3-23 03:27:47 | 只看該作者
10#
發(fā)表于 2025-3-23 09:07:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稻城县| 尉犁县| 进贤县| 华坪县| 许昌县| 兰坪| 遂平县| 油尖旺区| 抚顺县| 军事| 固安县| 怀仁县| 宿迁市| 新余市| 灌云县| 揭东县| 海安县| 周至县| 阳江市| 沂源县| 盘山县| 青海省| 长寿区| 额尔古纳市| 涟水县| 大理市| 三门县| 图木舒克市| 平邑县| 探索| 宜兴市| 奎屯市| 肥东县| 哈尔滨市| 波密县| 航空| 扎鲁特旗| 芜湖县| 榆社县| 通榆县| 武义县|