找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; With Keras and PyTor Sridhar‘Alla,Suman Kalyan Adari Book 20191st edition Sri

[復制鏈接]
查看: 20064|回復: 42
樓主
發(fā)表于 2025-3-21 17:38:41 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Beginning Anomaly Detection Using Python-Based Deep Learning
期刊簡稱With Keras and PyTor
影響因子2023Sridhar‘Alla,Suman Kalyan Adari
視頻videohttp://file.papertrans.cn/183/182228/182228.mp4
發(fā)行地址Explains some of the most effective and efficient anomaly detection methods available.Provides annotated Python code snippets and notebooks.Covers the most contemporary approaches to anomaly detection
圖書封面Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; With Keras and PyTor Sridhar‘Alla,Suman Kalyan Adari Book 20191st edition Sri
影響因子Utilize this easy-to-follow beginner‘s guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks..This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics oftime series-based anomaly detection..By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional m
Pindex Book 20191st edition
The information of publication is updating

書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning影響因子(影響力)




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning影響因子(影響力)學科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning網(wǎng)絡公開度




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning網(wǎng)絡公開度學科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning被引頻次




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning被引頻次學科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning年度引用




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning年度引用學科排名




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning讀者反饋




書目名稱Beginning Anomaly Detection Using Python-Based Deep Learning讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:39:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:28:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:12:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:03:07 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:28 | 只看該作者
7#
發(fā)表于 2025-3-22 20:53:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:29:57 | 只看該作者
Giang Phuong Nguyen,Hans J?rgen AndersenIn this chapter, you will learn about traditional methods of anomaly detection. You will also learn how various statistical methods and machine learning algorithms work and how they can be used to detect anomalies and how you can implement anomaly detection using several algorithms.
9#
發(fā)表于 2025-3-23 01:47:15 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:19 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
于都县| 东兴市| 都江堰市| 大同县| 宜君县| 新乡县| 宜昌市| 云南省| 乌鲁木齐市| 柘荣县| 钟山县| 咸丰县| 枝江市| 扎赉特旗| 平山县| 延长县| 新密市| 沈阳市| 通河县| 英超| 察隅县| 昌平区| 鄂伦春自治旗| 汝州市| 余姚市| 马关县| 白山市| 汕头市| 康马县| 黄浦区| 福清市| 文昌市| 建水县| 容城县| 南康市| 辽阳市| 孟村| 永善县| 镇安县| 镇宁| 盈江县|