找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; With Keras and PyTor Sridhar‘Alla,Suman Kalyan Adari Book 20191st edition Sri

[復(fù)制鏈接]
查看: 20068|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:38:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Beginning Anomaly Detection Using Python-Based Deep Learning
期刊簡(jiǎn)稱With Keras and PyTor
影響因子2023Sridhar‘Alla,Suman Kalyan Adari
視頻videohttp://file.papertrans.cn/183/182228/182228.mp4
發(fā)行地址Explains some of the most effective and efficient anomaly detection methods available.Provides annotated Python code snippets and notebooks.Covers the most contemporary approaches to anomaly detection
圖書(shū)封面Titlebook: Beginning Anomaly Detection Using Python-Based Deep Learning; With Keras and PyTor Sridhar‘Alla,Suman Kalyan Adari Book 20191st edition Sri
影響因子Utilize this easy-to-follow beginner‘s guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks..This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics oftime series-based anomaly detection..By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional m
Pindex Book 20191st edition
The information of publication is updating

書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning影響因子(影響力)




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning影響因子(影響力)學(xué)科排名




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning被引頻次




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning被引頻次學(xué)科排名




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning年度引用




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning年度引用學(xué)科排名




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning讀者反饋




書(shū)目名稱Beginning Anomaly Detection Using Python-Based Deep Learning讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:28:19 | 只看該作者
地板
發(fā)表于 2025-3-22 05:12:46 | 只看該作者
5#
發(fā)表于 2025-3-22 12:03:07 | 只看該作者
6#
發(fā)表于 2025-3-22 14:29:28 | 只看該作者
7#
發(fā)表于 2025-3-22 20:53:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:29:57 | 只看該作者
Giang Phuong Nguyen,Hans J?rgen AndersenIn this chapter, you will learn about traditional methods of anomaly detection. You will also learn how various statistical methods and machine learning algorithms work and how they can be used to detect anomalies and how you can implement anomaly detection using several algorithms.
9#
發(fā)表于 2025-3-23 01:47:15 | 只看該作者
10#
發(fā)表于 2025-3-23 09:05:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海原县| 运城市| 沂南县| 永德县| 台东市| 江北区| 田林县| 木兰县| 葫芦岛市| 大城县| 青岛市| 克拉玛依市| 曲麻莱县| 绩溪县| 阿克陶县| 左云县| 湖州市| 静宁县| 蕉岭县| 休宁县| 南宫市| 勐海县| 凤台县| 眉山市| 罗城| 徐汇区| 临湘市| 精河县| 柳林县| 新营市| 金阳县| 大田县| 天祝| 南昌市| 印江| 南通市| 东源县| 安溪县| 二连浩特市| 法库县| 新安县|