找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Beauville Surfaces and Groups; Ingrid Bauer,Shelly Garion,Alina Vdovina Conference proceedings 2015 Springer International Publishing Swit

[復(fù)制鏈接]
樓主: 女孩
31#
發(fā)表于 2025-3-26 23:28:08 | 只看該作者
32#
發(fā)表于 2025-3-27 01:41:11 | 只看該作者
,The Classification of Regular Surfaces Isogenous to a Product of Curves with?,,cting freely on .. In this article we classify all regular surfaces isogenous to a product with . under the assumption that the action of . is unmixed i.e. no element of . exchange the factors of the product ..
33#
發(fā)表于 2025-3-27 08:01:01 | 只看該作者
Characteristically Simple Beauville Groups, II: Low Rank and Sporadic Groups, group. Here we consider which characteristically simple groups can be Beauville groups. We show that if . is a cartesian power of a simple group ., ., ., ., ., or of a sporadic simple group, then . is a Beauville group if and only if it has two generators and is not isomorphic to ..
34#
發(fā)表于 2025-3-27 09:57:37 | 只看該作者
Remarks on Lifting Beauville Structures of Quasisimple Groups,a conjecture of Bauer, Catanese and Grunewald, which asserts that all non-abelian finite quasisimple groups except for the alternating group of degree five are Beauville groups. Here we show that our results can be used to show that certain split- and Frattini extensions of quasisimple groups are al
35#
發(fā)表于 2025-3-27 16:59:17 | 只看該作者
,On Quasi-étale Quotients of a Product of Two Curves,a finite set of points. A quasi-étale surface is the minimal resolution of the singularities of a quasi-étale quotient. They have been successfully used in the last years by several authors to produce several interesting new examples of surfaces. In this paper we describe the principal results on th
36#
發(fā)表于 2025-3-27 21:21:33 | 只看該作者
2194-1009 aces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces..Beauville surfaces are a class of rigid regular surfaces of general type, which c
37#
發(fā)表于 2025-3-27 22:19:52 | 只看該作者
38#
發(fā)表于 2025-3-28 05:06:44 | 只看該作者
Biology of Human Ovarian Cancer Xenografts five are Beauville groups. Here we show that our results can be used to show that certain split- and Frattini extensions of quasisimple groups are also Beauville groups. We also discuss some open problems for future investigations.
39#
發(fā)表于 2025-3-28 08:40:31 | 只看該作者
Biology of Human Ovarian Cancer Xenograftsed in the last years by several authors to produce several interesting new examples of surfaces. In this paper we describe the principal results on this class of surfaces, and report the full list of the minimal quasi-étale surfaces of general type with geometric genus equal to the irregularity ..
40#
發(fā)表于 2025-3-28 12:35:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潞西市| 顺平县| 阿尔山市| 汕头市| 娄底市| 旺苍县| 莱阳市| 上犹县| 吴江市| 桂东县| 米脂县| 南郑县| 介休市| 南乐县| 集安市| 神池县| 绥中县| 竹山县| 高密市| 桦川县| 苍南县| 浏阳市| 漳平市| 奉化市| 巴楚县| 竹北市| 建瓯市| 绵竹市| 闵行区| 卓资县| 建始县| 汽车| 唐海县| 栖霞市| 满城县| 武城县| 武穴市| 焦作市| 潜山县| 舒城县| 朝阳市|