找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Beauville Surfaces and Groups; Ingrid Bauer,Shelly Garion,Alina Vdovina Conference proceedings 2015 Springer International Publishing Swit

[復(fù)制鏈接]
查看: 35451|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:53:15 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱(chēng)Beauville Surfaces and Groups
影響因子2023Ingrid Bauer,Shelly Garion,Alina Vdovina
視頻videohttp://file.papertrans.cn/182/181965/181965.mp4
發(fā)行地址Includes supplementary material:
學(xué)科分類(lèi)Springer Proceedings in Mathematics & Statistics
圖書(shū)封面Titlebook: Beauville Surfaces and Groups;  Ingrid Bauer,Shelly Garion,Alina Vdovina Conference proceedings 2015 Springer International Publishing Swit
影響因子.This collection of surveys and research articles explores a fascinating class of varieties: Beauville surfaces. It is the first time that these objects are discussed from the points of view of algebraic geometry as well as group theory. The book also includes various open problems and conjectures related to these surfaces..Beauville surfaces are a class of rigid regular surfaces of general type, which can be described in a purely algebraic combinatoric way. They play an important role in different fields of mathematics like algebraic geometry, group theory and number theory. The notion of Beauville surface was introduced by Fabrizio Catanese in 2000 and after the first systematic study of these surfaces by Ingrid Bauer, Fabrizio Catanese and Fritz Grunewald, there has been an increasing interest in the subject..These proceedings reflect the topics of the lectures presented during the workshop ‘Beauville surfaces and groups 2012’, held at Newcastle University, UK in June 2012. This conference brought together, for the first time, experts of different fields of mathematics interested in Beauville surfaces..
Pindex Conference proceedings 2015
The information of publication is updating

書(shū)目名稱(chēng)Beauville Surfaces and Groups影響因子(影響力)




書(shū)目名稱(chēng)Beauville Surfaces and Groups影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Beauville Surfaces and Groups網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Beauville Surfaces and Groups網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Beauville Surfaces and Groups被引頻次




書(shū)目名稱(chēng)Beauville Surfaces and Groups被引頻次學(xué)科排名




書(shū)目名稱(chēng)Beauville Surfaces and Groups年度引用




書(shū)目名稱(chēng)Beauville Surfaces and Groups年度引用學(xué)科排名




書(shū)目名稱(chēng)Beauville Surfaces and Groups讀者反饋




書(shū)目名稱(chēng)Beauville Surfaces and Groups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:29:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:07:09 | 只看該作者
地板
發(fā)表于 2025-3-22 06:04:43 | 只看該作者
5#
發(fā)表于 2025-3-22 12:05:02 | 只看該作者
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/b/image/181965.jpg
6#
發(fā)表于 2025-3-22 16:24:20 | 只看該作者
https://doi.org/10.1007/978-3-319-13862-6Beauville Structures; Beauville Surfaces; Finite Simple Groups; P-Groups; Ramification Structures; Regula
7#
發(fā)表于 2025-3-22 17:16:12 | 只看該作者
978-3-319-34425-6Springer International Publishing Switzerland 2015
8#
發(fā)表于 2025-3-22 21:14:51 | 只看該作者
,The Classification of Regular Surfaces Isogenous to a Product of Curves with?,,cting freely on .. In this article we classify all regular surfaces isogenous to a product with . under the assumption that the action of . is unmixed i.e. no element of . exchange the factors of the product ..
9#
發(fā)表于 2025-3-23 04:07:02 | 只看該作者
10#
發(fā)表于 2025-3-23 08:58:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 13:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贵港市| 修水县| 广昌县| 黑河市| 凭祥市| 崇文区| 寿宁县| 敖汉旗| 光山县| 红桥区| 砀山县| 壤塘县| 新巴尔虎右旗| 富顺县| 扬州市| 沙坪坝区| 石棉县| 北京市| 阳城县| 浙江省| 普安县| 翁牛特旗| 涟水县| 道孚县| 富阳市| 文山县| 依兰县| 咸丰县| 苏尼特左旗| 阳原县| 永兴县| 涿鹿县| 香港| 崇左市| 桃源县| 东兴市| 剑河县| 太保市| 杂多县| 达州市| 甘孜县|