找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology 2; Topological Groups, Avishek Adhikari,Mahima Ranjan Adhikari Textbook 2022 The Editor(s) (if applicable) and The Author(s

[復(fù)制鏈接]
樓主: KEN
21#
發(fā)表于 2025-3-25 03:38:30 | 只看該作者
22#
發(fā)表于 2025-3-25 08:27:19 | 只看該作者
https://doi.org/10.1007/978-3-319-24633-8es of books studies the general properties of topological spaces and their continuous maps. But this chapter studies the topological spaces with other structures (algebraic) compatible with the given topological structures. For example, the circle group . in the complex plane . the 3-spheres . (grou
23#
發(fā)表于 2025-3-25 12:13:17 | 只看該作者
https://doi.org/10.1007/978-3-642-58600-2 . avoiding algebraic topology, except for a few isolated cases. It also studies the topology from a differential viewpoint. All manifolds studied in this chapter are by defining conditions topological manifolds in the sense that every manifold . carries a topological structure on its underlying spa
24#
發(fā)表于 2025-3-25 16:23:39 | 只看該作者
Stefan Kunze,Erik Schnetter,Roland Speith abstract group structure together with topological and manifold structures which are interrelated with each other by smooth functions. Lie groups consist of two most important special families: a family of differentiable manifolds and a family of topological groups. Their important examples include
25#
發(fā)表于 2025-3-25 21:52:43 | 只看該作者
26#
發(fā)表于 2025-3-26 00:16:43 | 只看該作者
The Small Scale Structure of the Universeudy of the topological concepts and results available in Volume 1 of the present series. Moreover, the books [Adhikari and Adhikari, 2014], [Adhikari, 2016], [Dugundji, 1966], [Simmons, 1963] and some other references are given in Bibliography.
27#
發(fā)表于 2025-3-26 05:53:36 | 只看該作者
Avishek Adhikari,Mahima Ranjan AdhikariPresents motivating examples, numerous illustrations, and applications.Provides problem-solving techniques for a better grasp of the topic.Promotes active learning of the subject with historical note
28#
發(fā)表于 2025-3-26 11:50:42 | 只看該作者
29#
發(fā)表于 2025-3-26 15:58:49 | 只看該作者
9樓
30#
發(fā)表于 2025-3-26 17:41:40 | 只看該作者
9樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九台市| 贵阳市| 湖北省| 栾川县| 泰州市| 凯里市| 县级市| 清涧县| 横峰县| 离岛区| 沅陵县| 辽阳市| 同心县| 闸北区| 清水县| 道孚县| 霍州市| 新蔡县| 台北县| 武隆县| 方山县| 温州市| 廊坊市| 玉环县| 自贡市| 江源县| 钟山县| 玉龙| 余姚市| 郯城县| 台湾省| 新宾| 彩票| 涡阳县| 西昌市| 白沙| 屯门区| 布尔津县| 禹州市| 惠东县| 太康县|