找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology 2; Topological Groups, Avishek Adhikari,Mahima Ranjan Adhikari Textbook 2022 The Editor(s) (if applicable) and The Author(s

[復制鏈接]
查看: 55285|回復: 35
樓主
發(fā)表于 2025-3-21 17:29:22 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Basic Topology 2
期刊簡稱Topological Groups,
影響因子2023Avishek Adhikari,Mahima Ranjan Adhikari
視頻videohttp://file.papertrans.cn/182/181184/181184.mp4
發(fā)行地址Presents motivating examples, numerous illustrations, and applications.Provides problem-solving techniques for a better grasp of the topic.Promotes active learning of the subject with historical note
圖書封面Titlebook: Basic Topology 2; Topological  Groups, Avishek Adhikari,Mahima Ranjan Adhikari Textbook 2022 The Editor(s) (if applicable) and The Author(s
影響因子.This second of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, algebra, and the theory of numbers.?Offering a proper background on?topology, analysis, and algebra,?this volume discusses?the?topological groups and topological vector spaces that provide many interesting geometrical objects which relate algebra with geometry and analysis.?This volume follows a systematic and comprehensive elementary approach to the topology related to manifolds, emphasizing?differential topology.?It further?communicates the history of the emergence of the concepts leading to the development of topological groups, manifolds, and also Lie groups as mathematical topics with their motivations. This book will promote the scope, power, and active learning of the subject while covering a wide range of theories and applications in a balanced unified way..
Pindex Textbook 2022
The information of publication is updating

書目名稱Basic Topology 2影響因子(影響力)




書目名稱Basic Topology 2影響因子(影響力)學科排名




書目名稱Basic Topology 2網(wǎng)絡公開度




書目名稱Basic Topology 2網(wǎng)絡公開度學科排名




書目名稱Basic Topology 2被引頻次




書目名稱Basic Topology 2被引頻次學科排名




書目名稱Basic Topology 2年度引用




書目名稱Basic Topology 2年度引用學科排名




書目名稱Basic Topology 2讀者反饋




書目名稱Basic Topology 2讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:10:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:22:17 | 只看該作者
Lie Groups and Lie Algebras,ie algebra and also correspondence between homomorphisms of Lie groups and homomorphisms of the associated Lie algebras. In this way, this theory provides a key link between Lie groups and Lie algebra. This link facilitates a study of Lie theory.
地板
發(fā)表于 2025-3-22 08:34:40 | 只看該作者
5#
發(fā)表于 2025-3-22 10:43:05 | 只看該作者
https://doi.org/10.1007/3-540-28555-5ituations. This subject arising as a branch of geometry plays a key role in modern mathematics, because of its study of continuous deformations such as stretching, twisting, crumpling and bending, which are allowed, whereas tearing or gluing are not allowed.
6#
發(fā)表于 2025-3-22 16:20:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:53:37 | 只看該作者
romotes active learning of the subject with historical note .This second of the three-volume book is targeted as a basic course in topology for undergraduate and graduate students of mathematics. It focuses on many variants of topology and its applications in modern analysis, geometry, algebra, and
8#
發(fā)表于 2025-3-22 21:14:43 | 只看該作者
9#
發(fā)表于 2025-3-23 02:44:29 | 只看該作者
10#
發(fā)表于 2025-3-23 09:04:56 | 只看該作者
https://doi.org/10.1007/978-3-319-24633-8cal and algebraic group structures are compatible in the sense that the corresponding group operations are continuous. It asserts that the concept of a topological group is precisely that concept in which the algebraic and topological structures are united and interrelated. This phenomenon leads to the concept of topological groups.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
浑源县| 凤山市| 叙永县| 孝义市| 古浪县| 东光县| 西安市| 兴隆县| 耿马| 班玛县| 新泰市| 罗山县| 汶上县| 衡水市| 华宁县| 谢通门县| 六枝特区| 隆安县| 尤溪县| 江永县| 赤峰市| 绥江县| 大方县| 乐清市| 静海县| 永川市| 霸州市| 德惠市| 讷河市| 体育| 淄博市| 米泉市| 柳江县| 台江县| 神木县| 丰镇市| 集贤县| 招远市| 潮安县| 镇雄县| 邵阳市|