找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology; M. A. Armstrong Textbook 1983 Springer Science+Business Media New York 1983 Algebraic topology.Basic.Fundamental group.Top

[復(fù)制鏈接]
樓主: CROSS
21#
發(fā)表于 2025-3-25 04:08:07 | 只看該作者
Surfaces,of regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
22#
發(fā)表于 2025-3-25 09:31:36 | 只看該作者
Simplicial Homology,he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
23#
發(fā)表于 2025-3-25 13:40:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:33 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:53 | 只看該作者
W. G. Schmidt,P. H. Hahn,F. Bechstedtof regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
27#
發(fā)表于 2025-3-26 07:13:19 | 只看該作者
https://doi.org/10.1007/978-3-642-59354-3he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
28#
發(fā)表于 2025-3-26 12:11:57 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:56 | 只看該作者
30#
發(fā)表于 2025-3-26 19:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吐鲁番市| 达孜县| 双柏县| 遂川县| 大足县| 卓尼县| 远安县| 阳高县| 田林县| 禄丰县| 康马县| 冕宁县| 平利县| 台东市| 六枝特区| 丰原市| 固镇县| 东丰县| 阿坝县| 贵定县| 竹溪县| 屏山县| 兴化市| 甘谷县| 吴江市| 南靖县| 金寨县| 运城市| 出国| 龙山县| 陵川县| 景德镇市| 嘉善县| 葵青区| 广昌县| 沅江市| 泾阳县| 沙河市| 永春县| 郸城县| 聂拉木县|