找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology; M. A. Armstrong Textbook 1983 Springer Science+Business Media New York 1983 Algebraic topology.Basic.Fundamental group.Top

[復(fù)制鏈接]
樓主: CROSS
21#
發(fā)表于 2025-3-25 04:08:07 | 只看該作者
Surfaces,of regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
22#
發(fā)表于 2025-3-25 09:31:36 | 只看該作者
Simplicial Homology,he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
23#
發(fā)表于 2025-3-25 13:40:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:33 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:53 | 只看該作者
W. G. Schmidt,P. H. Hahn,F. Bechstedtof regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
27#
發(fā)表于 2025-3-26 07:13:19 | 只看該作者
https://doi.org/10.1007/978-3-642-59354-3he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
28#
發(fā)表于 2025-3-26 12:11:57 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:56 | 只看該作者
30#
發(fā)表于 2025-3-26 19:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴马| 天门市| 明水县| 宾阳县| 巴中市| 辽阳县| 泰宁县| 商河县| 包头市| 克什克腾旗| 泰和县| 蓝山县| 瑞昌市| 闽清县| 集安市| 融水| 信丰县| 梅州市| 镇巴县| 通江县| 凉城县| 石景山区| 星座| 浑源县| 乃东县| 广州市| 如皋市| 靖远县| 海口市| 金山区| 安新县| 上林县| 江川县| 古田县| 喀什市| 嘉祥县| 韩城市| 梅河口市| 屯留县| 寿光市| 尼勒克县|