找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Topology; M. A. Armstrong Textbook 1983 Springer Science+Business Media New York 1983 Algebraic topology.Basic.Fundamental group.Top

[復(fù)制鏈接]
樓主: CROSS
21#
發(fā)表于 2025-3-25 04:08:07 | 只看該作者
Surfaces,of regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
22#
發(fā)表于 2025-3-25 09:31:36 | 只看該作者
Simplicial Homology,he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
23#
發(fā)表于 2025-3-25 13:40:31 | 只看該作者
24#
發(fā)表于 2025-3-25 17:45:36 | 只看該作者
25#
發(fā)表于 2025-3-25 20:50:33 | 只看該作者
26#
發(fā)表于 2025-3-26 03:48:53 | 只看該作者
W. G. Schmidt,P. H. Hahn,F. Bechstedtof regular solids up to similarity by the number of edges of each face and the number of faces meeting at each vertex. It should be clear that we have no hope of classifying topological spaces up to homeomorphism, or even up to homotopy equivalence. We can, however, give a complete classification of closed surfaces.
27#
發(fā)表于 2025-3-26 07:13:19 | 只看該作者
https://doi.org/10.1007/978-3-642-59354-3he underlying complex, making it ideal for studying questions which are essentially two-dimensional (say distinguishing between two surfaces), but leaving it impotent in the face of a problem such as showing that S. and S. are not homeomorphic.
28#
發(fā)表于 2025-3-26 12:11:57 | 只看該作者
29#
發(fā)表于 2025-3-26 13:30:56 | 只看該作者
30#
發(fā)表于 2025-3-26 19:03:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松阳县| 浦县| 启东市| 天峻县| 云林县| 新安县| 裕民县| 邮箱| 汝城县| 沁源县| 吴川市| 无为县| 南陵县| 临沂市| 浠水县| 通州区| 平江县| 顺昌县| 砚山县| 西畴县| 西丰县| 建湖县| 饶平县| 陈巴尔虎旗| 梁山县| 湾仔区| 安义县| 康马县| 闸北区| 宜良县| 西畴县| 民勤县| 任丘市| 建阳市| 文登市| 平度市| 安化县| 巨野县| 桦甸市| 晋江市| 太和县|