找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Representation Theory of Algebras; Ibrahim Assem,Flávio U. Coelho Textbook 2020 Springer Nature Switzerland AG 2020 Almost split seq

[復制鏈接]
樓主: 傷害
21#
發(fā)表于 2025-3-25 03:36:47 | 只看該作者
22#
發(fā)表于 2025-3-25 09:45:20 | 只看該作者
High Angle of Attack Aerodynamicsnot have a similar theory for studying representation-infinite algebras, but the ideas and techniques developed for representation-finite algebras still show their usefulness when applied to the understanding of new classes. The aim of this chapter is to prove some of the most important known result
23#
發(fā)表于 2025-3-25 14:13:39 | 只看該作者
24#
發(fā)表于 2025-3-25 19:34:17 | 只看該作者
25#
發(fā)表于 2025-3-25 22:35:04 | 只看該作者
https://doi.org/10.1007/978-1-4612-2824-0ain working tool in this book is the notion of almost split sequences. It arose from an attempt to understand the morphisms lying in the radical of a module category. From this attempt, Auslander and Reiten extracted the notions of irreducible morphisms and almost split sequences, which allow all ir
26#
發(fā)表于 2025-3-26 00:11:34 | 只看該作者
27#
發(fā)表于 2025-3-26 06:26:46 | 只看該作者
28#
發(fā)表于 2025-3-26 10:24:48 | 只看該作者
High Angle of Attack Aerodynamics algebra of some “well-chosen” module. For instance, the classical Morita theorem asserts that, given a progenerator . of the module category of an algebra ., that is, a projective module . that is also a generator of ., the categories . and . are equivalent. This implies that, from the point of vie
29#
發(fā)表于 2025-3-26 16:12:41 | 只看該作者
High Angle of Attack Aerodynamicss representation-finite or not, and, if this was the case, of computing all its (isoclasses of) indecomposable modules. Indeed, it was believed that this class of algebras would be relatively easy to classify and that their indecomposable modules have a relatively simple structure. This approach was
30#
發(fā)表于 2025-3-26 20:27:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
闸北区| 香港| 芦溪县| 阿合奇县| 渝中区| 三门峡市| 礼泉县| 原平市| 凤庆县| 满城县| 通榆县| 乐安县| 文成县| 分宜县| 阿克陶县| 建始县| 海门市| 昌黎县| 阳新县| 巨鹿县| 青海省| 修武县| 九龙城区| 荣成市| 新乐市| 滕州市| 若尔盖县| 醴陵市| 和林格尔县| 佛冈县| 漾濞| 涡阳县| 独山县| 丰镇市| 肥城市| 乳山市| 宿州市| 遵义县| 青河县| 天峻县| 无极县|