找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Representation Theory of Algebras; Ibrahim Assem,Flávio U. Coelho Textbook 2020 Springer Nature Switzerland AG 2020 Almost split seq

[復(fù)制鏈接]
樓主: 傷害
11#
發(fā)表于 2025-3-23 10:10:20 | 只看該作者
12#
發(fā)表于 2025-3-23 14:41:39 | 只看該作者
The radical and almost split sequences,. We define and study irreducible morphisms and almost split sequences in Section II.2. We prove in Section II.3 the existence theorem for almost split sequences and we proceed to apply these sequences to the study of the radical in Section II.4.
13#
發(fā)表于 2025-3-23 21:24:18 | 只看該作者
https://doi.org/10.1007/978-1-4612-2824-0nstruction procedure for the simplest Auslander–Reiten quivers, and study the shape of some of their connected components. In the third section, we show how the Auslander–Reiten quiver can be used for computing radical morphisms, and in the fourth, we compute the Auslander–Reiten quiver of the Kronecker algebra.
14#
發(fā)表于 2025-3-24 02:00:04 | 只看該作者
High Angle of Attack Aerodynamics to the other. This approach, initiated with the projectivisation procedure, much used by Auslander and his school, culminated in the now very important tilting theory. The aim of this chapter is to present these topics.
15#
發(fā)表于 2025-3-24 03:37:21 | 只看該作者
,The Auslander–Reiten quiver of an algebra,nstruction procedure for the simplest Auslander–Reiten quivers, and study the shape of some of their connected components. In the third section, we show how the Auslander–Reiten quiver can be used for computing radical morphisms, and in the fourth, we compute the Auslander–Reiten quiver of the Kronecker algebra.
16#
發(fā)表于 2025-3-24 10:04:19 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:11:24 | 只看該作者
Constructing almost split sequences,ow to apply these results to construct examples of almost split sequences. In the final Section III.4, we relate the Auslander–Reiten translates of a given module over an algebra to that over a quotient algebra.
19#
發(fā)表于 2025-3-24 21:17:20 | 只看該作者
Representation-finite algebras,not have a similar theory for studying representation-infinite algebras, but the ideas and techniques developed for representation-finite algebras still show their usefulness when applied to the understanding of new classes. The aim of this chapter is to prove some of the most important known result
20#
發(fā)表于 2025-3-24 23:19:17 | 只看該作者
Textbook 2020ting to learn the fundamentals of this rapidly growing field. A graduate course innon-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大丰市| 铜鼓县| 徐闻县| 琼结县| 江津市| 法库县| 呼玛县| 宁化县| 蒙阴县| 宝丰县| 唐河县| 淅川县| 宁阳县| 昌乐县| 伊金霍洛旗| 金川县| 临泉县| 迁西县| 太白县| 汉川市| 积石山| 宜良县| 梅州市| 大连市| 恩施市| 洛南县| 江油市| 宁都县| 云南省| 东城区| 庆安县| 京山县| 靖西县| 吐鲁番市| 吉安县| 成武县| 蒙山县| 白朗县| 图木舒克市| 孟津县| 玉环县|