找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Representation Theory of Algebras; Ibrahim Assem,Flávio U. Coelho Textbook 2020 Springer Nature Switzerland AG 2020 Almost split seq

[復(fù)制鏈接]
樓主: 傷害
11#
發(fā)表于 2025-3-23 10:10:20 | 只看該作者
12#
發(fā)表于 2025-3-23 14:41:39 | 只看該作者
The radical and almost split sequences,. We define and study irreducible morphisms and almost split sequences in Section II.2. We prove in Section II.3 the existence theorem for almost split sequences and we proceed to apply these sequences to the study of the radical in Section II.4.
13#
發(fā)表于 2025-3-23 21:24:18 | 只看該作者
https://doi.org/10.1007/978-1-4612-2824-0nstruction procedure for the simplest Auslander–Reiten quivers, and study the shape of some of their connected components. In the third section, we show how the Auslander–Reiten quiver can be used for computing radical morphisms, and in the fourth, we compute the Auslander–Reiten quiver of the Kronecker algebra.
14#
發(fā)表于 2025-3-24 02:00:04 | 只看該作者
High Angle of Attack Aerodynamics to the other. This approach, initiated with the projectivisation procedure, much used by Auslander and his school, culminated in the now very important tilting theory. The aim of this chapter is to present these topics.
15#
發(fā)表于 2025-3-24 03:37:21 | 只看該作者
,The Auslander–Reiten quiver of an algebra,nstruction procedure for the simplest Auslander–Reiten quivers, and study the shape of some of their connected components. In the third section, we show how the Auslander–Reiten quiver can be used for computing radical morphisms, and in the fourth, we compute the Auslander–Reiten quiver of the Kronecker algebra.
16#
發(fā)表于 2025-3-24 10:04:19 | 只看該作者
17#
發(fā)表于 2025-3-24 14:09:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:11:24 | 只看該作者
Constructing almost split sequences,ow to apply these results to construct examples of almost split sequences. In the final Section III.4, we relate the Auslander–Reiten translates of a given module over an algebra to that over a quotient algebra.
19#
發(fā)表于 2025-3-24 21:17:20 | 只看該作者
Representation-finite algebras,not have a similar theory for studying representation-infinite algebras, but the ideas and techniques developed for representation-finite algebras still show their usefulness when applied to the understanding of new classes. The aim of this chapter is to prove some of the most important known result
20#
發(fā)表于 2025-3-24 23:19:17 | 只看該作者
Textbook 2020ting to learn the fundamentals of this rapidly growing field. A graduate course innon-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 09:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
甘洛县| 张家港市| 沙坪坝区| 鹤壁市| 合阳县| 神池县| 时尚| 台湾省| 阳原县| 塘沽区| 盱眙县| 长春市| 大邑县| 增城市| 齐齐哈尔市| 噶尔县| 花莲县| 肇东市| 沙河市| 深水埗区| 竹溪县| 黑河市| 三门县| 右玉县| 育儿| 上蔡县| 鄂托克前旗| 炉霍县| 锡林郭勒盟| 香格里拉县| 文山县| 尉犁县| 福清市| 策勒县| 景洪市| 双鸭山市| 万宁市| 门源| 微山县| 广安市| 康平县|