找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Real Analysis; Houshang H. Sohrab Textbook 20031st edition Birkh?user Boston 2003 Arithmetic.Cardinal number.Counting.Equivalence.ca

[復(fù)制鏈接]
樓主: Grievous
31#
發(fā)表于 2025-3-26 23:01:26 | 只看該作者
32#
發(fā)表于 2025-3-27 04:14:11 | 只看該作者
33#
發(fā)表于 2025-3-27 06:24:29 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8n are numerous and we shall not go into a detailed explanation of them. Probably the most important among them is that the space of all Riemann integrable fuctions on a compact interval [., .] ? ? is . with respect to the natural “metric”:
34#
發(fā)表于 2025-3-27 09:35:57 | 只看該作者
https://doi.org/10.1007/978-3-642-57987-5en chosen, especially when complements of sets (to be defined below) are involved in the discussion. Before defining the basic operations on sets, let us introduce a notation which will be used throughout the book.
35#
發(fā)表于 2025-3-27 17:06:56 | 只看該作者
https://doi.org/10.1007/978-3-8349-8227-8their . Here, the most important concept is that of a .. It will be used in Appendix A for a brief discussion of Cantor’s construction of real numbers from the Cauchy sequences in the set ? of rational numbers. The properties of sequences will be used in a short section on infinite series of real nu
36#
發(fā)表于 2025-3-27 19:05:26 | 只看該作者
Gegenstand der Produktionsplanung,oint, convergent sequence and Cauchy sequence. We then defined the concept of limit for general real-valued functions of a real variable, and proved that such limits can also be defined in terms of limits of sequences. Also, before introducing the related notion of ., we introduced (in Chapter 4) th
37#
發(fā)表于 2025-3-27 23:52:59 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8erested in a larger class of functions containing simultaneously .. One of our goals in this chapter will be to introduce and study this class. Although we start with F. Riesz’s definition of a measurable function, we shall later give the more general definitions of ., ., . and prove the equivalence
38#
發(fā)表于 2025-3-28 03:53:22 | 只看該作者
39#
發(fā)表于 2025-3-28 07:55:08 | 只看該作者
40#
發(fā)表于 2025-3-28 14:04:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 06:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
旬邑县| 山丹县| 清河县| 师宗县| 阜南县| 临清市| 定兴县| 嵊州市| 灵宝市| 陇南市| 皮山县| 盐山县| 抚顺市| 和顺县| 泊头市| 克拉玛依市| 治多县| 永吉县| 荃湾区| 兴业县| 开封市| 怀宁县| 门源| 曲靖市| 南陵县| 淳化县| 铜陵市| 定日县| 汝阳县| 罗江县| 卢龙县| 凭祥市| 姚安县| 大厂| 新丰县| 灵台县| 容城县| 紫云| 泰顺县| 大方县| 玉龙|