找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Real Analysis; Houshang H. Sohrab Textbook 20031st edition Birkh?user Boston 2003 Arithmetic.Cardinal number.Counting.Equivalence.ca

[復(fù)制鏈接]
樓主: Grievous
21#
發(fā)表于 2025-3-25 05:44:19 | 只看該作者
Gegenstand der Produktionsplanung, abstract .; i.e., a set on which the concept of . (or .) can be defined. Indeed, as we have already seen, the basic concept of . which we studied in Chapters 2 and 3, and used to define (in Chapter 4) the related concept of continuity, is defined in terms of .. Let us recall that the distance betwe
22#
發(fā)表于 2025-3-25 09:47:48 | 只看該作者
Grundbegriffe der Produktionsplanung,l variable, the derivative may be interpreted as an extension of the notion of . defined for (nonvertical) straight lines. Recall that a (nonvertical) straight line is the graph of an . ? . + ., where ., . are real constants and . is the slope of the line. Now, if .(.) := . + . ?. ∈ ?, then, for any
23#
發(fā)表于 2025-3-25 14:17:16 | 只看該作者
Grundbegriffe der Produktionsplanung,-valued function of a real variable, this integral extends the notion of ., defined initially for . For a . constant function .(.) := . ?. ∈ [., .], the area of the rectangle bounded by the graph of ., the .-axis, and the vertical lines . = . and . = ., is defined to be the non-negative number . :=
24#
發(fā)表于 2025-3-25 19:24:26 | 只看該作者
25#
發(fā)表于 2025-3-25 22:07:26 | 只看該作者
26#
發(fā)表于 2025-3-26 00:15:44 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8n are numerous and we shall not go into a detailed explanation of them. Probably the most important among them is that the space of all Riemann integrable fuctions on a compact interval [., .] ? ? is . with respect to the natural “metric”:
27#
發(fā)表于 2025-3-26 06:11:58 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:45 | 只看該作者
29#
發(fā)表于 2025-3-26 14:31:16 | 只看該作者
30#
發(fā)表于 2025-3-26 19:38:45 | 只看該作者
http://image.papertrans.cn/b/image/181132.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
漠河县| 大埔县| 婺源县| 华亭县| 漠河县| 高雄县| 新干县| 凤庆县| 南丹县| 抚顺市| 荥经县| 疏勒县| 昔阳县| 宁海县| 海口市| 宁蒗| 聊城市| 中江县| 溆浦县| 鄂尔多斯市| 北碚区| 华坪县| 修武县| 铜陵市| 大同县| 隆昌县| 彭水| 图木舒克市| 洪泽县| 塘沽区| 都匀市| 汉寿县| 鹿邑县| 涡阳县| 那曲县| 泰和县| 毕节市| 黄浦区| 措勤县| 瓮安县| 吴桥县|