找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Real Analysis; Houshang H. Sohrab Textbook 20031st edition Birkh?user Boston 2003 Arithmetic.Cardinal number.Counting.Equivalence.ca

[復制鏈接]
樓主: Grievous
21#
發(fā)表于 2025-3-25 05:44:19 | 只看該作者
Gegenstand der Produktionsplanung, abstract .; i.e., a set on which the concept of . (or .) can be defined. Indeed, as we have already seen, the basic concept of . which we studied in Chapters 2 and 3, and used to define (in Chapter 4) the related concept of continuity, is defined in terms of .. Let us recall that the distance betwe
22#
發(fā)表于 2025-3-25 09:47:48 | 只看該作者
Grundbegriffe der Produktionsplanung,l variable, the derivative may be interpreted as an extension of the notion of . defined for (nonvertical) straight lines. Recall that a (nonvertical) straight line is the graph of an . ? . + ., where ., . are real constants and . is the slope of the line. Now, if .(.) := . + . ?. ∈ ?, then, for any
23#
發(fā)表于 2025-3-25 14:17:16 | 只看該作者
Grundbegriffe der Produktionsplanung,-valued function of a real variable, this integral extends the notion of ., defined initially for . For a . constant function .(.) := . ?. ∈ [., .], the area of the rectangle bounded by the graph of ., the .-axis, and the vertical lines . = . and . = ., is defined to be the non-negative number . :=
24#
發(fā)表于 2025-3-25 19:24:26 | 只看該作者
25#
發(fā)表于 2025-3-25 22:07:26 | 只看該作者
26#
發(fā)表于 2025-3-26 00:15:44 | 只看該作者
https://doi.org/10.1007/978-3-322-87580-8n are numerous and we shall not go into a detailed explanation of them. Probably the most important among them is that the space of all Riemann integrable fuctions on a compact interval [., .] ? ? is . with respect to the natural “metric”:
27#
發(fā)表于 2025-3-26 06:11:58 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:45 | 只看該作者
29#
發(fā)表于 2025-3-26 14:31:16 | 只看該作者
30#
發(fā)表于 2025-3-26 19:38:45 | 只看該作者
http://image.papertrans.cn/b/image/181132.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
平利县| 迭部县| 安龙县| 额敏县| 扶余县| 潮州市| 汕尾市| 昆山市| 巴林左旗| 红原县| 定襄县| 金堂县| 新竹县| 龙山县| 普兰县| 探索| 东乌珠穆沁旗| 麻栗坡县| 光泽县| 射洪县| 瓮安县| 民丰县| 微博| 出国| 新宾| 克拉玛依市| 武陟县| 沅江市| 恩施市| 政和县| 区。| 贵南县| 西充县| 南安市| 盐池县| 资溪县| 剑川县| 大庆市| 松潘县| 太保市| 江门市|