找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory; André Weil Book 19671st edition Springer-Verlag Berlin Heidelberg 1967 Cantor.Mathematica.field.number theory

[復(fù)制鏈接]
樓主: Animosity
31#
發(fā)表于 2025-3-26 22:44:21 | 只看該作者
0072-7830 Overview: 978-3-662-00046-5Series ISSN 0072-7830 Series E-ISSN 2196-9701
32#
發(fā)表于 2025-3-27 02:19:02 | 只看該作者
33#
發(fā)表于 2025-3-27 08:27:11 | 只看該作者
Takeshi Sairenji,Takeshi Kuratae .. for the maximal compact subring of .. and .. for the maximal ideal of .., these being the subsets of .. respectively defined by |.|.?1 and by |.|. < 1. We write . for the set of the infinite places of ., and . for any finite set of places of ., containing ..
34#
發(fā)表于 2025-3-27 12:13:51 | 只看該作者
Ysolina Centifanto-Fitzgerald Ph.D. finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
35#
發(fā)表于 2025-3-27 17:12:53 | 只看該作者
36#
發(fā)表于 2025-3-27 18:21:16 | 只看該作者
Adelese .. for the maximal compact subring of .. and .. for the maximal ideal of .., these being the subsets of .. respectively defined by |.|.?1 and by |.|. < 1. We write . for the set of the infinite places of ., and . for any finite set of places of ., containing ..
37#
發(fā)表于 2025-3-28 00:59:37 | 只看該作者
Traces and norms finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
38#
發(fā)表于 2025-3-28 02:32:18 | 只看該作者
Sonja J. Olsen,Patrick S. MooreLet E be a vector-space of finite dimension over .. By a .-lattice in E, we understand a finitely generated subgroup of E which contains a basis of E over ..
39#
發(fā)表于 2025-3-28 07:13:48 | 只看該作者
40#
發(fā)表于 2025-3-28 12:20:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 05:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
琼结县| 如东县| 蛟河市| 通榆县| 屏南县| 宁武县| 武山县| 广南县| 栾川县| 武强县| 兴仁县| 大方县| 辉南县| 镇坪县| 皮山县| 平顶山市| 泰来县| 砚山县| 石家庄市| 枣庄市| 广南县| 贞丰县| 日土县| 长治市| 萍乡市| 岳西县| 石屏县| 高台县| 任丘市| 闵行区| 东阿县| 邢台县| 娱乐| 峨边| 阿克苏市| 侯马市| 娱乐| 长武县| 西宁市| 平罗县| 井陉县|