找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory; André Weil Book 19671st edition Springer-Verlag Berlin Heidelberg 1967 Cantor.Mathematica.field.number theory

[復(fù)制鏈接]
樓主: Animosity
21#
發(fā)表于 2025-3-25 06:42:25 | 只看該作者
Herpesviruses, the Immune System, and AIDS the infinite ones, singled out by intrinsic properties. It would be possible to develop an analogous theory for .-fields of characteristic .>1 by arbitrarily setting apart a finite number of places; this was the point of view adopted by Dedekind and Weber in the early stages of the theory. Whicheve
22#
發(fā)表于 2025-3-25 09:03:52 | 只看該作者
https://doi.org/10.1007/978-1-4613-1507-0 at .; if . is a finite place, .. is the maximal compact subring of .., and .. the maximal ideal in ... Moreover, in the latter case, we will agree once for all to denote by .. the module of the field .. and by .. a prime element of .., so that, by th. 6 of Chap. I–4, ../.. is a field with .. elemen
23#
發(fā)表于 2025-3-25 15:39:44 | 只看該作者
Ysolina Centifanto-Fitzgerald Ph.D. finite degree . over .. If . is an .-field and . ≠ ., we must have . = ., . = ., . = 2; then, by corollary 3 of prop. 4, Chap. III–3, ..(.) = .+. and ..(.)= .; .. maps . onto ., and .. maps . onto ., which is a subgroup of . of index 2.
24#
發(fā)表于 2025-3-25 18:00:58 | 只看該作者
25#
發(fā)表于 2025-3-25 20:52:21 | 只看該作者
C. S. Foster,D. P. Dubey,S. Stux,E. Unisinite and > 0. If . and . are such spaces, we write Hom(., .) for the space of homomorphisms of . into ., and let it operate on the right on .; in other words, if . is such a homomorphism, and . ∈ ., we write . for the image of . under .. We consider Hom(., .), in an obvious manner, as a vector-spac
26#
發(fā)表于 2025-3-26 03:11:26 | 只看該作者
27#
發(fā)表于 2025-3-26 08:00:32 | 只看該作者
28#
發(fā)表于 2025-3-26 09:16:35 | 只看該作者
29#
發(fā)表于 2025-3-26 13:33:04 | 只看該作者
Springer-Verlag Berlin Heidelberg 1967
30#
發(fā)表于 2025-3-26 18:09:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 01:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳春市| 常德市| 贺州市| 云林县| 遂溪县| 吉林省| 炉霍县| 西平县| 门源| 太仆寺旗| 成武县| 布尔津县| 碌曲县| 磴口县| 宁海县| 繁峙县| 湟中县| 丹江口市| 漳平市| 伊金霍洛旗| 徐水县| 涿鹿县| 全州县| 承德市| 翼城县| 潢川县| 太湖县| 盖州市| 榆树市| 阳曲县| 大宁县| 洱源县| 台州市| 佛山市| 安远县| 荥经县| 永定县| 新宁县| 大邑县| 鲁山县| 六枝特区|