找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Valued Neural Network; Ordinary and Fractio George A. Anastassiou Book 2023 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
樓主: arouse
21#
發(fā)表于 2025-3-25 06:49:07 | 只看該作者
22#
發(fā)表于 2025-3-25 08:09:28 | 只看該作者
23#
發(fā)表于 2025-3-25 14:27:19 | 只看該作者
24#
發(fā)表于 2025-3-25 16:47:46 | 只看該作者
Die Kommunalwissenschaften und ihre Pflegethese operators to the unit operator, as we are studying the univariate case. We treat also analogously the multivariate case by using Fréchet derivatives. The functions under approximation are Banach space valued. It follows [.].
25#
發(fā)表于 2025-3-25 22:35:22 | 只看該作者
26#
發(fā)表于 2025-3-26 03:25:14 | 只看該作者
Quantitative Approximation by Kantorovich-Shilkret Quasi-interpolation Neural Network Operators Revhey are additionally uniformly continuous we derive pointwise and uniform convergences. We include also the related Complex approximation. Our activation functions are induced by the arctangent, algebraic, Gudermannian and generalized symmetrical sigmoid functions. It follows [.].
27#
發(fā)表于 2025-3-26 05:22:00 | 只看該作者
28#
發(fā)表于 2025-3-26 09:55:17 | 只看該作者
,Algebraic Function Induced Banach Space Valued Ordinary and?Fractional Neural Network Approximation or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional derivatives
29#
發(fā)表于 2025-3-26 13:55:03 | 只看該作者
Gudermannian Function Induced Banach Space Valued Ordinary and Fractional Neural Network Approximatval or all the real line by quasi-interpolation Banach space valued neural network operators. These approximations are derived by establishing Jackson type inequalities involving the modulus of continuity of the engaged function or its Banach space valued high order derivative or fractional derivati
30#
發(fā)表于 2025-3-26 18:39:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
襄汾县| 凤翔县| 获嘉县| 克什克腾旗| 富锦市| 富锦市| 峡江县| 房产| 潢川县| 新化县| 道孚县| 长子县| 兴海县| 栖霞市| 九寨沟县| 黄山市| 得荣县| 海安县| 沅江市| 清涧县| 孟州市| 郁南县| 通化市| 荥阳市| 秭归县| 敖汉旗| 五寨县| 太康县| 利津县| 安阳市| 丰镇市| 凌云县| 东乌| 金川县| 资阳市| 博客| 边坝县| 色达县| 广宗县| 库伦旗| 通许县|