找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Valued Neural Network; Ordinary and Fractio George A. Anastassiou Book 2023 The Editor(s) (if applicable) and The Author(s), u

[復(fù)制鏈接]
查看: 44726|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:27:11 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Banach Space Valued Neural Network
期刊簡稱Ordinary and Fractio
影響因子2023George A. Anastassiou
視頻videohttp://file.papertrans.cn/181/180535/180535.mp4
發(fā)行地址Presents the generalization and modernization of approximation by neural network operators.Provides applications in applied sciences, applied mathematics, and computer science and engineering.Is suita
學科分類Studies in Computational Intelligence
圖書封面Titlebook: Banach Space Valued Neural Network; Ordinary and Fractio George A. Anastassiou Book 2023 The Editor(s) (if applicable) and The Author(s), u
影響因子This book is about the generalization and modernization of approximation by neural network operators. Functions under approximation and the neural networks are Banach space valued. These are induced by a great variety of activation functions deriving from the arctangent, algebraic, Gudermannian, and generalized symmetric sigmoid functions. Ordinary, fractional, fuzzy, and stochastic approximations are exhibited at the univariate, fractional, and multivariate levels. Iterated-sequential approximations are also covered. The book’s results are expected to find applications in the many areas of applied mathematics, computer science and engineering, especially in artificial intelligence and machine learning. Other possible applications can be in applied sciences like statistics, economics, etc. Therefore, this book is suitable for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries..
Pindex Book 2023
The information of publication is updating

書目名稱Banach Space Valued Neural Network影響因子(影響力)




書目名稱Banach Space Valued Neural Network影響因子(影響力)學科排名




書目名稱Banach Space Valued Neural Network網(wǎng)絡(luò)公開度




書目名稱Banach Space Valued Neural Network網(wǎng)絡(luò)公開度學科排名




書目名稱Banach Space Valued Neural Network被引頻次




書目名稱Banach Space Valued Neural Network被引頻次學科排名




書目名稱Banach Space Valued Neural Network年度引用




書目名稱Banach Space Valued Neural Network年度引用學科排名




書目名稱Banach Space Valued Neural Network讀者反饋




書目名稱Banach Space Valued Neural Network讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:07:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:04:50 | 只看該作者
地板
發(fā)表于 2025-3-22 08:23:58 | 只看該作者
5#
發(fā)表于 2025-3-22 12:18:03 | 只看該作者
Multivariate Fuzzy Approximation by Neural Network Operators Induced by Several Sigmoid Functions Ron type inequalities involving the multivariate fuzzy moduli of continuity of the .th order (.) . -fuzzy partial derivatives, of the involved multivariate fuzzy number valued function. The treated operators are of averaged, quasi-interpolation, Kantorovich and quadrature types at the multivariate fuzzy setting. It follows [.].
6#
發(fā)表于 2025-3-22 15:38:45 | 只看該作者
7#
發(fā)表于 2025-3-22 18:09:27 | 只看該作者
8#
發(fā)表于 2025-3-23 00:45:16 | 只看該作者
9#
發(fā)表于 2025-3-23 04:47:57 | 只看該作者
https://doi.org/10.1007/978-3-642-68259-9ves. Our operators are defined by using a density function generated by the Gudermannian sigmoid function. The approximations are pointwise and of the uniform norm. The related Banach space valued feed-forward neural networks are with one hidden layer. It relies on [.].
10#
發(fā)表于 2025-3-23 08:13:30 | 只看該作者
Personalvertretung in den Kommunente modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the algebraic sigmoid function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer. It follows [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道真| 全南县| 青冈县| 大连市| 连南| 文成县| 乌审旗| 崇信县| 邯郸县| 钟祥市| 丹凤县| 封丘县| 永修县| 栖霞市| 克什克腾旗| 正蓝旗| 阜康市| 信宜市| 游戏| 清远市| 玛沁县| 瑞金市| 姚安县| 汪清县| 长兴县| 潜山县| 江口县| 阿图什市| 黑河市| 颍上县| 桦南县| 二手房| 彭水| 北流市| 哈尔滨市| 山西省| 永济市| 蓝田县| 望奎县| 吉首市| 虹口区|