找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Theory; The Basis for Linear Marián Fabian,Petr Habala,Václav Zizler Textbook 2011 Springer Science+Business Media, LLC 2011 R

[復(fù)制鏈接]
樓主: commingle
41#
發(fā)表于 2025-3-28 16:02:23 | 只看該作者
Basics in Nonlinear Geometric Analysis,paces. We prove Keller’s theorem on homeomorphism of infinite-dimensional compact convex sets in Banach spaces to .. We also prove the Kadec theorem on the homeomorphism of every separable reflexive space to a Hilbert space. Then we prove some results on uniform, in particular Lipschitz, homeomorphisms.
42#
發(fā)表于 2025-3-28 19:16:20 | 只看該作者
Weakly Compactly Generated Spaces,ctly generated spaces, in short WCG spaces). We focus on their decomposition properties, renormings, and on the topological properties of their dual spaces. We prove that WCG spaces are generated by reflexive spaces. Then we study absolutely summing operators and the Dunford–Pettis property.
43#
發(fā)表于 2025-3-29 00:36:07 | 只看該作者
44#
發(fā)表于 2025-3-29 04:37:06 | 只看該作者
45#
發(fā)表于 2025-3-29 10:34:34 | 只看該作者
46#
發(fā)表于 2025-3-29 12:34:58 | 只看該作者
47#
發(fā)表于 2025-3-29 16:49:02 | 只看該作者
48#
發(fā)表于 2025-3-29 20:56:08 | 只看該作者
Zur Typologie der politischen Parteienof the local theory of Banach spaces. It is a vast and deep part of Banach space theory intimately related to probability and combinatorics. Our goal is to familiarize the reader with some of its basic notions and results that are accessible without the use of deep probabilistic tools.
49#
發(fā)表于 2025-3-30 03:04:16 | 只看該作者
50#
發(fā)表于 2025-3-30 05:59:35 | 只看該作者
Valentin L. Popov,Markus He?,Emanuel Willertroperty has several equivalent characterizations and applications. In particular, Asplund spaces are characterized by the Radon–Nikodym property of their dual spaces. As another application, we show that Lipschitz mappings from separable Banach spaces into Banach spaces with RNP are at some points G
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卓资县| 无为县| 扎兰屯市| 博白县| 新丰县| 文成县| 江陵县| 潞西市| 河东区| 宿迁市| 桂平市| 崇文区| 南皮县| 浮山县| 宝清县| 会宁县| 高雄市| 嘉黎县| 绥芬河市| 瑞丽市| 吴忠市| 阳山县| 普兰店市| 浦县| 涟源市| 灌云县| 定州市| 娱乐| 明星| 绥江县| 沈丘县| 鸡西市| 商丘市| 新乡县| 永丰县| 交口县| 仁寿县| 新巴尔虎右旗| 四平市| 周至县| 安陆市|