找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Banach Space Theory; The Basis for Linear Marián Fabian,Petr Habala,Václav Zizler Textbook 2011 Springer Science+Business Media, LLC 2011 R

[復(fù)制鏈接]
樓主: commingle
11#
發(fā)表于 2025-3-23 12:59:52 | 只看該作者
12#
發(fā)表于 2025-3-23 14:30:27 | 只看該作者
13#
發(fā)表于 2025-3-23 18:10:39 | 只看該作者
14#
發(fā)表于 2025-3-24 01:24:39 | 只看該作者
https://doi.org/10.1007/978-3-658-17995-3ples of functional analysis. The rich duality theory of Banach spaces is one of its direct consequences. The second fundamental principle, the Banach open mapping theorem, is studied in the rest of the chapter.
15#
發(fā)表于 2025-3-24 04:36:46 | 只看該作者
16#
發(fā)表于 2025-3-24 09:35:24 | 只看該作者
17#
發(fā)表于 2025-3-24 11:19:22 | 只看該作者
18#
發(fā)表于 2025-3-24 18:50:16 | 只看該作者
Handbuch der deutschen Parteienfact, for naturally defined separable Banach spaces, it is usually easy to find their Schauder basis. This notion has proved to be an extremely useful tool in the study of the structure of classical as well as abstract Banach spaces.
19#
發(fā)表于 2025-3-24 22:42:45 | 只看該作者
Schauder Bases,fact, for naturally defined separable Banach spaces, it is usually easy to find their Schauder basis. This notion has proved to be an extremely useful tool in the study of the structure of classical as well as abstract Banach spaces.
20#
發(fā)表于 2025-3-25 00:10:53 | 只看該作者
Textbook 2011end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 10:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
瑞安市| 溆浦县| 和静县| 合阳县| 桃源县| 康保县| 康马县| 宁河县| 开化县| 孝感市| 卓尼县| 宁城县| 临邑县| 平顶山市| 饶平县| 恩平市| 治多县| 武清区| 遵义县| 沙坪坝区| 辰溪县| 新乡市| 崇仁县| 历史| 太白县| 武穴市| 皮山县| 湖南省| 靖远县| 九龙坡区| SHOW| 青川县| 阿荣旗| 诸城市| 军事| 高密市| 江安县| 阜城县| 衡南县| 电白县| 巫山县|