找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BMS Particles in Three Dimensions; Blagoje Oblak Book 2017 Springer International Publishing AG 2017 BMS Symmetry.BMS Group.Three-dimensio

[復制鏈接]
樓主: patch-test
21#
發(fā)表于 2025-3-25 04:24:18 | 只看該作者
Symmetries of Gravity in AdS,In this chapter we explore a physical model where the Virasoro group plays a key role, namely three-dimensional gravity on Anti-de Sitter (AdS) backgrounds and its putative dual two-dimensional conformal field theory (CFT). These considerations will be a basis and a guide for our study of asymptotically flat space-times in part III.
22#
發(fā)表于 2025-3-25 08:26:04 | 只看該作者
Classical BMS, SymmetryThe Bondi–Metzner–Sachs (BMS) group is an infinite-dimensional symmetry group of asymptotically flat gravity at null infinity, that extends Poincaré symmetry.
23#
發(fā)表于 2025-3-25 11:57:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:23 | 只看該作者
ConclusionWe have now completed our survey of the group-theoretic aspects of three-dimensional gravity, and in particular of BMS symmetry in three dimensions.
26#
發(fā)表于 2025-3-26 00:51:29 | 只看該作者
Charles X. Wang,Scott Webster,Sidong Zhangproblem that can be studied on the sole basis of symmetries, without any assumptions on the underlying microscopic theory. In this introduction we describe this strategy in some more detail, starting in Sect.?. with a broad overview of asymptotic symmetries in general and Bondi-Metzner-Sachs (BMS) s
27#
發(fā)表于 2025-3-26 04:32:01 | 只看該作者
28#
發(fā)表于 2025-3-26 12:10:15 | 只看該作者
NDE 4.0: Image and Sound Recognitionunitary representations, which are induced from representations of their translation subgroup combined with a so-called .. We interpret these representations as . propagating in space-time and having definite transformation properties under the corresponding symmetry group. This picture will be inst
29#
發(fā)表于 2025-3-26 16:18:54 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
团风县| 桐柏县| 察哈| 临沧市| 维西| 彭阳县| 郎溪县| 宁陵县| 永德县| 大兴区| 金平| 微博| 旅游| 合川市| 仁化县| 合肥市| 尉犁县| 三亚市| 静乐县| 连州市| 吴忠市| 佛坪县| 和平区| 阿克苏市| 通海县| 丹凤县| 黔西| 横峰县| 叙永县| 荥经县| 洛南县| 汽车| 乌审旗| 嵊州市| 阳信县| 德保县| 当雄县| 麻栗坡县| 河源市| 竹山县| 恩施市|