找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BMS Particles in Three Dimensions; Blagoje Oblak Book 2017 Springer International Publishing AG 2017 BMS Symmetry.BMS Group.Three-dimensio

[復制鏈接]
樓主: patch-test
21#
發(fā)表于 2025-3-25 04:24:18 | 只看該作者
Symmetries of Gravity in AdS,In this chapter we explore a physical model where the Virasoro group plays a key role, namely three-dimensional gravity on Anti-de Sitter (AdS) backgrounds and its putative dual two-dimensional conformal field theory (CFT). These considerations will be a basis and a guide for our study of asymptotically flat space-times in part III.
22#
發(fā)表于 2025-3-25 08:26:04 | 只看該作者
Classical BMS, SymmetryThe Bondi–Metzner–Sachs (BMS) group is an infinite-dimensional symmetry group of asymptotically flat gravity at null infinity, that extends Poincaré symmetry.
23#
發(fā)表于 2025-3-25 11:57:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:25:48 | 只看該作者
25#
發(fā)表于 2025-3-25 21:01:23 | 只看該作者
ConclusionWe have now completed our survey of the group-theoretic aspects of three-dimensional gravity, and in particular of BMS symmetry in three dimensions.
26#
發(fā)表于 2025-3-26 00:51:29 | 只看該作者
Charles X. Wang,Scott Webster,Sidong Zhangproblem that can be studied on the sole basis of symmetries, without any assumptions on the underlying microscopic theory. In this introduction we describe this strategy in some more detail, starting in Sect.?. with a broad overview of asymptotic symmetries in general and Bondi-Metzner-Sachs (BMS) s
27#
發(fā)表于 2025-3-26 04:32:01 | 只看該作者
28#
發(fā)表于 2025-3-26 12:10:15 | 只看該作者
NDE 4.0: Image and Sound Recognitionunitary representations, which are induced from representations of their translation subgroup combined with a so-called .. We interpret these representations as . propagating in space-time and having definite transformation properties under the corresponding symmetry group. This picture will be inst
29#
發(fā)表于 2025-3-26 16:18:54 | 只看該作者
30#
發(fā)表于 2025-3-26 18:54:14 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 02:38
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
溧水县| 图木舒克市| 田东县| 铜陵市| 宝鸡市| 大竹县| 城市| 云安县| 罗城| 灵石县| 苍溪县| 收藏| 健康| 榕江县| 报价| 苏尼特左旗| 固镇县| 彰武县| 厦门市| 昌邑市| 庆云县| 大余县| 额尔古纳市| 庄浪县| 湛江市| 嘉定区| 和硕县| 泰兴市| 察雅县| 东阿县| 勐海县| 秦皇岛市| 昆明市| 阿瓦提县| 和平县| 哈巴河县| 丰台区| 大埔县| 仙桃市| 华坪县| 望奎县|