找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: BMS Particles in Three Dimensions; Blagoje Oblak Book 2017 Springer International Publishing AG 2017 BMS Symmetry.BMS Group.Three-dimensio

[復制鏈接]
樓主: patch-test
11#
發(fā)表于 2025-3-23 11:18:01 | 只看該作者
Coadjoint Orbits and Geometric Quantizationthe opposite phenomenon: starting from a . of a group ., we will obtain a representation by . the orbit. This construction will further explain why orbits of momenta classify representations of semi-direct products. In addition it will turn out to be a tool for understanding gravity in parts II and III.
12#
發(fā)表于 2025-3-23 17:19:54 | 只看該作者
13#
發(fā)表于 2025-3-23 20:59:12 | 只看該作者
Virasoro Coadjoint Orbitsal for our purposes because they will turn out to coincide with the supermomentum orbits that classify BMS. particles. As we shall see, despite being infinite-dimensional, these orbits behave very much like the finite-dimensional coadjoint orbits of ..
14#
發(fā)表于 2025-3-23 23:11:24 | 只看該作者
Madhuja Tanya Mitra,K. Ray ChaudhuriIn this short chapter we discuss the implementation of symmetries in a quantum-mechanical context.
15#
發(fā)表于 2025-3-24 06:02:35 | 只看該作者
16#
發(fā)表于 2025-3-24 10:09:01 | 只看該作者
Properties of Nonlinear Optical Crystals,The Bondi–Metzner–Sachs (BMS) group is an infinite-dimensional symmetry group of asymptotically flat gravity at null infinity, that extends Poincaré symmetry.
17#
發(fā)表于 2025-3-24 11:39:03 | 只看該作者
https://doi.org/10.1007/978-3-540-46793-9This chapter is devoted to irreducible unitary representations of the BMS. group, i.e. BMS. particles, which we classify and interpret. As we shall see, the classification is provided by supermomentum orbits that coincide with coadjoint orbits of the Virasoro group.
18#
發(fā)表于 2025-3-24 16:13:58 | 只看該作者
19#
發(fā)表于 2025-3-24 20:21:34 | 只看該作者
20#
發(fā)表于 2025-3-24 23:32:18 | 只看該作者
Quantum Mechanics and Central ExtensionsIn this short chapter we discuss the implementation of symmetries in a quantum-mechanical context.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 02:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
永修县| 句容市| 武城县| 开阳县| 荥阳市| 八宿县| 蚌埠市| 辽源市| 平潭县| 萝北县| 信宜市| 开化县| 红桥区| 大名县| 东乡族自治县| 同江市| 定日县| 什邡市| 长汀县| 历史| 攀枝花市| 长汀县| 凯里市| 湖州市| 沧源| 富顺县| 彩票| 柳林县| 邵武市| 潮州市| 梁河县| 西乌珠穆沁旗| 文山县| 阿拉善盟| 佛坪县| 油尖旺区| 平遥县| 扎赉特旗| 临清市| 霍山县| 闵行区|