找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2024; 33rd International C Michael Wand,Kristína Malinovská,Igor V. Tetko Conferenc

[復(fù)制鏈接]
樓主: burgeon
41#
發(fā)表于 2025-3-28 16:46:54 | 只看該作者
42#
發(fā)表于 2025-3-28 19:57:57 | 只看該作者
43#
發(fā)表于 2025-3-28 23:54:12 | 只看該作者
44#
發(fā)表于 2025-3-29 03:22:40 | 只看該作者
45#
發(fā)表于 2025-3-29 11:04:45 | 只看該作者
46#
發(fā)表于 2025-3-29 11:35:26 | 只看該作者
Cross-Modal Attention Alignment Network with?Auxiliary Text Description for?Zero-Shot Sketch-Based ILLM with several interrogative sentences, (ii) a Feature Extraction Module that includes two ViTs for sketch and image data, a transformer for extracting tokens of sentences of each training category, finally (iii) a Cross-modal Alignment Module that exchanges the token features of both text-sketch
47#
發(fā)表于 2025-3-29 18:11:17 | 只看該作者
Exploring Interpretable Semantic Alignment for?Multimodal Machine Translationalysis of the results demonstrates the effectiveness and interpretability of our model, which is highly competitive compared to the baseline. Further exploration of extractors in MMT shows that a large multimodal pre-trained model can provide more fine-grained semantic alignment, thus giving it an a
48#
發(fā)表于 2025-3-29 22:35:09 | 只看該作者
Modal Fusion-Enhanced Two-Stream Hashing Network for?Cross Modal Retrievalon matrices between modalities. Subsequently, by adjusting the similarity weights of the fusion matrix between modalities, we shorten the distances between the most similar instance pairs and increase the distances between the most dissimilar instance pairs, thereby generating hash codes with higher
49#
發(fā)表于 2025-3-30 01:26:51 | 只看該作者
Text Visual Question Answering Based on?Interactive Learning and?Relationship Modeling (RPRET) layer is introduced to model the relative position relationship between different modalities in the image, thereby improving the performance of answering the question related to spatial position relationships. The proposed method outperforms various state-of-the-art models on two public dat
50#
發(fā)表于 2025-3-30 05:47:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 04:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗山县| 铜梁县| 黄冈市| 孝昌县| 会同县| 汾西县| 科技| 奎屯市| 韶关市| 内黄县| 阿拉善右旗| 隆回县| 开平市| 通城县| 启东市| 来凤县| 治县。| 淮南市| 裕民县| 顺昌县| 巴彦淖尔市| 淄博市| 清苑县| 凤城市| 红安县| 隆昌县| 建平县| 和政县| 安乡县| 临西县| 通榆县| 噶尔县| 屯留县| 中方县| 图木舒克市| 怀来县| 平舆县| 济阳县| 和田市| 永春县| 武宁县|