找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2024; 33rd International C Michael Wand,Kristína Malinovská,Igor V. Tetko Conferenc

[復(fù)制鏈接]
查看: 20412|回復(fù): 58
樓主
發(fā)表于 2025-3-21 16:10:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱Artificial Neural Networks and Machine Learning – ICANN 2024
期刊簡稱33rd International C
影響因子2023Michael Wand,Kristína Malinovská,Igor V. Tetko
視頻videohttp://file.papertrans.cn/168/167619/167619.mp4
學(xué)科分類Lecture Notes in Computer Science
圖書封面Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2024; 33rd International C Michael Wand,Kristína Malinovská,Igor V. Tetko Conferenc
影響因子.The ten-volume set LNCS 15016-15025 constitutes the refereed proceedings of the 33rd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2024, held in Lugano, Switzerland, during September 17–20, 2024...The 294 full papers and 16 short papers included in these proceedings were carefully reviewed and selected from 764 submissions. The papers cover the following topics:?..Part I - theory of neural networks and machine learning; novel methods in machine learning; novel neural architectures; neural architecture search; self-organization; neural processes; novel architectures for computer vision; and fairness in machine learning...Part II - computer vision: classification; computer vision: object detection; computer vision: security and adversarial attacks; computer vision: image enhancement; and computer vision: 3D methods...Part III - computer vision: anomaly detection; computer vision: segmentation; computer vision: pose estimation and tracking; computer vision: video processing; computer vision: generative methods; and topics in computer vision...Part IV - brain-inspired computing; cognitive and computational neuroscience; explainable artificial intel
Pindex Conference proceedings 2024
The information of publication is updating

書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024影響因子(影響力)




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024影響因子(影響力)學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024網(wǎng)絡(luò)公開度




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024被引頻次




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024被引頻次學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024年度引用




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024年度引用學(xué)科排名




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024讀者反饋




書目名稱Artificial Neural Networks and Machine Learning – ICANN 2024讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:13:01 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:38:13 | 只看該作者
地板
發(fā)表于 2025-3-22 06:01:38 | 只看該作者
Addressing the Privacy and Complexity of Urban Traffic Flow Prediction with Federated Learning and Sorporate external factors into the road network, which helps the model to consider multiple factors affecting traffic flow more fully. Evaluation on the real dataset shows that our framework can achieve high accuracy while preserving privacy.
5#
發(fā)表于 2025-3-22 10:08:53 | 只看該作者
6#
發(fā)表于 2025-3-22 15:12:12 | 只看該作者
Mark R. Harrigan,John P. Deveikisorporate external factors into the road network, which helps the model to consider multiple factors affecting traffic flow more fully. Evaluation on the real dataset shows that our framework can achieve high accuracy while preserving privacy.
7#
發(fā)表于 2025-3-22 18:43:57 | 只看該作者
8#
發(fā)表于 2025-3-23 00:08:27 | 只看該作者
9#
發(fā)表于 2025-3-23 03:23:56 | 只看該作者
10#
發(fā)表于 2025-3-23 09:35:44 | 只看該作者
Cross-Modal Attention Alignment Network with?Auxiliary Text Description for?Zero-Shot Sketch-Based Io textual information involved. However, the growing prevalence of Large-scale pre-trained Language Models (LLMs), which have demonstrated great knowledge learned from web-scale data, can provide us with an opportunity to conclude collective textual information. Our key innovation lies in the usage
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
和林格尔县| 邓州市| 琼海市| 富蕴县| 那曲县| 上饶县| 克山县| 集安市| 二连浩特市| 象山县| 嘉黎县| 嵩明县| 衡阳市| 吴忠市| 蒙山县| 涞水县| 城固县| 广河县| 甘泉县| 布拖县| 九龙坡区| 乌拉特中旗| 思茅市| 宜春市| 微博| 景德镇市| 筠连县| 衡南县| 瑞丽市| 满洲里市| 临沭县| 龙陵县| 静安区| 竹溪县| 合川市| 招远市| 辉县市| 四川省| 雷州市| 郴州市| 汤阴县|