找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2024; 33rd International C Michael Wand,Kristína Malinovská,Igor V. Tetko Conferenc

[復(fù)制鏈接]
樓主: invigorating
41#
發(fā)表于 2025-3-28 14:39:20 | 只看該作者
42#
發(fā)表于 2025-3-28 22:05:28 | 只看該作者
Edged Weisfeiler-Lehman Algorithmn the representation of a node is updated by aggregating representations from itself and neighbor nodes recursively. Similar to the propagation-aggregation methodology, the Weisfeiler-Lehman (1-WL) algorithm tests isomorphism through color refinement according to color representations of a node and
43#
發(fā)表于 2025-3-28 23:07:13 | 只看該作者
44#
發(fā)表于 2025-3-29 03:16:50 | 只看該作者
Graph-Guided Multi-view Text Classification: Advanced Solutions for?Fast Inference of parameters and high memory requirements, making it difficult to implement in some real-time scenarios or limited resources. Therefore, researchers attempt?to use lightweight Graph Neural Networks(GNN) with excellent feature expression as an alternative solution. However, current GNN-based method
45#
發(fā)表于 2025-3-29 08:37:59 | 只看該作者
Invariant Graph Contrastive Learning for?Mitigating Neighborhood Bias in?Graph Neural Network Based tite graphs. Despite the success of existing GNN-based recommender systems, they generally suffer from the . problem, which breaks the homophily assumption in various real-world recommendation scenarios. The neighborhood bias stems from the mixed complex local patterns caused by the diverse user pre
46#
發(fā)表于 2025-3-29 11:32:08 | 只看該作者
Key Substructure-Driven Backdoor Attacks on?Graph Neural Networksing backdoor attacks have two main limitations: Firstly, they lack flexibility and effectiveness in associating predefined substructures with predicted labels, limiting their ability to influence the classifier. Secondly, the injection locations of these substructures lack stealth, failing to exploi
47#
發(fā)表于 2025-3-29 19:35:17 | 只看該作者
48#
發(fā)表于 2025-3-29 23:01:23 | 只看該作者
Multi-graph Fusion and?Virtual Node Enhanced Graph Neural Networkses. However, many GNN-based techniques assume complete and accurate graph relations. Unfortunately, this assumption often diverges from reality, as real-world scenarios frequently exhibit missing and erroneous edges within graphs. Consequently, GNNs that rely solely on the original graph structure i
49#
發(fā)表于 2025-3-30 01:14:52 | 只看該作者
50#
發(fā)表于 2025-3-30 06:33:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗江县| 依兰县| 石门县| 甘谷县| 教育| 乌兰察布市| 建阳市| 洛宁县| 绥化市| 黑山县| 尉犁县| 马尔康县| 平安县| 金川县| 贺州市| 上高县| 酒泉市| 广丰县| 康定县| 黄大仙区| 象山县| 柏乡县| 鄄城县| 巩留县| 舞阳县| 临夏市| 兴山县| 普定县| 行唐县| 焦作市| 筠连县| 沿河| 西丰县| 苍山县| 措美县| 灵石县| 正定县| 伊川县| 岳阳市| 吉隆县| 腾冲县|