找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Artificial Neural Networks and Machine Learning – ICANN 2024; 33rd International C Michael Wand,Kristína Malinovská,Igor V. Tetko Conferenc

[復(fù)制鏈接]
樓主: invigorating
11#
發(fā)表于 2025-3-23 13:39:39 | 只看該作者
Key Substructure-Driven Backdoor Attacks on?Graph Neural Networkscker-chosen target class key substructures, modifying few critical edges and nodes. Our approach across real datasets spanning diverse domains highlights its efficiency. The proposed methodology establishes a pioneering direction for refining backdoor attack techniques on GNNs.
12#
發(fā)表于 2025-3-23 15:22:10 | 只看該作者
Missing Data Imputation via?Neighbor Data Feature-Enriched Neural Ordinary Differential Equationsetwork is then employed to learn adjacent information of neighboring variables. The temporal information is captured by applying a gate recurrent unit module, thereby obtaining a spatiotemporal prior. The decoder introduces an ordinary differential equation module to generate a series of continuous
13#
發(fā)表于 2025-3-23 19:05:28 | 只看該作者
14#
發(fā)表于 2025-3-24 00:37:08 | 只看該作者
STGNA: Spatial-Temporal Graph Convolutional Networks with Node Level Attention for Shortwave Communiatial-temporal patterns of shortwave communications parameters, yielding to enhanced forecasting accuracy. Comprehensive experiments on a targeted dataset demonstrate that our approach significantly outperforms other baselines in forecasting accuracy.
15#
發(fā)表于 2025-3-24 05:37:45 | 只看該作者
Virtual Nodes based Heterogeneous Graph Convolutional Neural Network for Efficient Long-Range Informormation aggregation with only 4 layers. Additionally, we demonstrate that VN-HGCN can serve as a versatile framework that can be seamlessly applied to other HGNN models, showcasing its generalizability. Empirical evaluations validate the effectiveness of VN-HGCN, and extensive experiments conducted
16#
發(fā)表于 2025-3-24 08:20:32 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:07 | 只看該作者
An Enhanced Prompt-Based LLM Reasoning Scheme via?Knowledge Graph-Integrated Collaboration of the reasoning results. Experimental results show that our scheme significantly progressed across multiple datasets, notably achieving an improvement of over 10% on the QALD10 dataset compared to both the best baseline and the fine-tuned state-of-the-art (SOTA) models.
18#
發(fā)表于 2025-3-24 17:42:30 | 只看該作者
19#
發(fā)表于 2025-3-24 22:39:48 | 只看該作者
20#
發(fā)表于 2025-3-25 02:50:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 行唐县| 黄浦区| 乌拉特后旗| 壶关县| 射洪县| 武胜县| 玉田县| 南投市| 文成县| 道真| 安徽省| 灵丘县| 贡山| 东山县| 浦城县| 宁乡县| 潍坊市| 左云县| 闻喜县| 仁怀市| 桦南县| 双江| 罗源县| 剑河县| 土默特右旗| 容城县| 萍乡市| 聊城市| 阿荣旗| 黑河市| 稷山县| 彭泽县| 新巴尔虎左旗| 会东县| 翁牛特旗| 新田县| 江津市| 昌黎县| 贞丰县| 左贡县|