找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Intelligent Disease Diagnosis and Treatment; Research Papers in H Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain Book 2024 The Ed

[復制鏈接]
樓主: 轉(zhuǎn)變
11#
發(fā)表于 2025-3-23 11:31:31 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:02 | 只看該作者
Images Processing and Visualization of Brain Tumors,main requests of medical specialists are taken into account. The work shows that based on the developed methodology 3D modeling of brain tumor MRI data from a set of 2D images (DICOM) provide realistic visualization.
13#
發(fā)表于 2025-3-23 19:57:10 | 只看該作者
3D Lung Tumor Segmentation System Using Adaptive Structural Deep Belief Network,ion, a framework which realizes a series of medical imaging analysis for medical professionals in clinics is proposed as the utilization of our Adaptive DBN model, from collecting data to model training, inference, and re-training for new data.
14#
發(fā)表于 2025-3-24 01:39:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:19 | 只看該作者
Forward Nonlinear Model for Deep Learning of EEG Auditory Attention Detection in Cocktail Party Problem, they have some inherent limitations. The main objective of this contribution is to show that nonlinear modeling of speech-electroencephalography system ensures the best performance in terms of higher correlation between stimulus and neural response, thus proving the limitations of linear appro
16#
發(fā)表于 2025-3-24 09:46:23 | 只看該作者
Computational Intelligence Based Modelling of Polyneuropathy Diagnosis,o Intensity in diagnosing specific PNP types. The work contributes to data analysis and medical knowledge, providing valuable insights for informed decision-making in the polyneuropathy diagnostic process. Future research avenues include refining data preprocessing and exploring the cost implication
17#
發(fā)表于 2025-3-24 13:16:08 | 只看該作者
18#
發(fā)表于 2025-3-24 18:52:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:01 | 只看該作者
Decision Support System for Skin Lesion Diagnosis Using Deep Learning, full-supervised deep learning procedure with small scale of labeled training samples. Benefitting from the maintained knowledge in the pretrained network, the finally constructed model even with a limited number of annotated samples, can be expected to produce promising classification performance.
20#
發(fā)表于 2025-3-25 03:08:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
招远市| 荥经县| 西乌珠穆沁旗| 江门市| 渑池县| 门源| 隆子县| 隆昌县| 镇赉县| 余江县| 三亚市| 合作市| 寿阳县| 安化县| 望都县| 盐山县| 朝阳区| 车致| 什邡市| 邵武市| 哈尔滨市| 溧水县| 斗六市| 四川省| 四子王旗| 蒲城县| 禹州市| 页游| 贵溪市| 防城港市| 离岛区| 龙岩市| 安岳县| 喀什市| 龙川县| 黔东| 孟州市| 鄱阳县| 平乐县| 乌鲁木齐市| 盐山县|