找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Advances in Intelligent Disease Diagnosis and Treatment; Research Papers in H Chee-Peng Lim,Ashlesha Vaidya,Lakhmi C. Jain Book 2024 The Ed

[復制鏈接]
樓主: 轉(zhuǎn)變
11#
發(fā)表于 2025-3-23 11:31:31 | 只看該作者
12#
發(fā)表于 2025-3-23 16:52:02 | 只看該作者
Images Processing and Visualization of Brain Tumors,main requests of medical specialists are taken into account. The work shows that based on the developed methodology 3D modeling of brain tumor MRI data from a set of 2D images (DICOM) provide realistic visualization.
13#
發(fā)表于 2025-3-23 19:57:10 | 只看該作者
3D Lung Tumor Segmentation System Using Adaptive Structural Deep Belief Network,ion, a framework which realizes a series of medical imaging analysis for medical professionals in clinics is proposed as the utilization of our Adaptive DBN model, from collecting data to model training, inference, and re-training for new data.
14#
發(fā)表于 2025-3-24 01:39:14 | 只看該作者
15#
發(fā)表于 2025-3-24 04:54:19 | 只看該作者
Forward Nonlinear Model for Deep Learning of EEG Auditory Attention Detection in Cocktail Party Problem, they have some inherent limitations. The main objective of this contribution is to show that nonlinear modeling of speech-electroencephalography system ensures the best performance in terms of higher correlation between stimulus and neural response, thus proving the limitations of linear appro
16#
發(fā)表于 2025-3-24 09:46:23 | 只看該作者
Computational Intelligence Based Modelling of Polyneuropathy Diagnosis,o Intensity in diagnosing specific PNP types. The work contributes to data analysis and medical knowledge, providing valuable insights for informed decision-making in the polyneuropathy diagnostic process. Future research avenues include refining data preprocessing and exploring the cost implication
17#
發(fā)表于 2025-3-24 13:16:08 | 只看該作者
18#
發(fā)表于 2025-3-24 18:52:24 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:01 | 只看該作者
Decision Support System for Skin Lesion Diagnosis Using Deep Learning, full-supervised deep learning procedure with small scale of labeled training samples. Benefitting from the maintained knowledge in the pretrained network, the finally constructed model even with a limited number of annotated samples, can be expected to produce promising classification performance.
20#
發(fā)表于 2025-3-25 03:08:20 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-26 02:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
多伦县| 安吉县| 邯郸市| 台江县| 秦安县| 沙雅县| 桃源县| 民权县| 无为县| 宁陕县| 建湖县| 淳安县| 上犹县| 启东市| 宿州市| 南岸区| 襄垣县| 鹿邑县| 息烽县| 嘉荫县| 雷波县| 神木县| 买车| 和顺县| 永顺县| 台江县| 米脂县| 汾西县| 南城县| 老河口市| 新河县| 峡江县| 界首市| 南宁市| 彭山县| 城口县| 桃源县| 闸北区| 泰宁县| 开平市| 平和县|